Vitesse angulaire

Tu as déjà entendu parler de la vitesse et des angles, mais as-tu déjà entendu parler de la vitesse angulaire ? La vitesse angulaire décrit la vitesse à laquelle un objet se déplace en termes d'angles plutôt qu'en termes de distances. C'est une façon différente d'envisager le mouvement des objets, mais elle peut être très pratique dans certains cas, et avec quelques formules simples, nous pouvons en fait relier la vitesse "normale" à la vitesse angulaire. Plongeons dans le vif du sujet !

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supposons qu'une voiture se déplaçant à \(70\,\mathrm{mph}\) passe devant toi. Sa vitesse angulaire maximale par rapport à toi sera-t-elle plus grande ou plus petite si elle passe plus près ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La vitesse angulaire de quelque chose qui s'éloigne directement de toi est-elle nulle ou non nulle ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La vitesse angulaire de quelque chose qui se déplace en ligne droite et qui ne te touche pas est-elle nulle ou non nulle ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la vitesse angulaire d'une pale d'un ventilateur qui a une période de \(1/2\) seconde, par rapport au milieu du ventilateur ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la vitesse angulaire de ton enfant dans un carrousel par rapport au milieu du carrousel ? Ton enfant est assis à \(4\,\mathrm{m}\) du milieu et va à \(1\,\mathrm{m/s}\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Tu te trouves sur une piste d'atterrissage et un avion volant ainsi qu'un écureuil se dirigent tous deux directement vers toi. La vitesse angulaire de quel objet est la plus grande ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la vitesse de la Lune, à condition qu'elle soit à \(400,\mathrm{Mm}\) de distance et qu'elle mette un mois à faire le tour de la Terre ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux chiens tournent en rond à \N(10\N,\Nmathrm{mph}\N) mais leurs cercles de course ont des rayons différents. Quel chien sera étourdi en premier ? Suppose que les chiens sont identiques.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lequel des deux objets suivants aura une vitesse angulaire plus grande par rapport à tes yeux ? Une fourmi qui marche à toute vitesse sur ton bras ou une voiture qui roule à toute vitesse sur une autoroute située à 10 km de là ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supposons qu'une voiture se déplaçant à \(70\,\mathrm{mph}\) passe devant toi. Sa vitesse angulaire maximale par rapport à toi sera-t-elle plus grande ou plus petite si elle passe plus près ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La vitesse angulaire de quelque chose qui s'éloigne directement de toi est-elle nulle ou non nulle ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La vitesse angulaire de quelque chose qui se déplace en ligne droite et qui ne te touche pas est-elle nulle ou non nulle ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la vitesse angulaire d'une pale d'un ventilateur qui a une période de \(1/2\) seconde, par rapport au milieu du ventilateur ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la vitesse angulaire de ton enfant dans un carrousel par rapport au milieu du carrousel ? Ton enfant est assis à \(4\,\mathrm{m}\) du milieu et va à \(1\,\mathrm{m/s}\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Tu te trouves sur une piste d'atterrissage et un avion volant ainsi qu'un écureuil se dirigent tous deux directement vers toi. La vitesse angulaire de quel objet est la plus grande ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la vitesse de la Lune, à condition qu'elle soit à \(400,\mathrm{Mm}\) de distance et qu'elle mette un mois à faire le tour de la Terre ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux chiens tournent en rond à \N(10\N,\Nmathrm{mph}\N) mais leurs cercles de course ont des rayons différents. Quel chien sera étourdi en premier ? Suppose que les chiens sont identiques.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lequel des deux objets suivants aura une vitesse angulaire plus grande par rapport à tes yeux ? Une fourmi qui marche à toute vitesse sur ton bras ou une voiture qui roule à toute vitesse sur une autoroute située à 10 km de là ?

Afficer la réponse

Des millions de fiches spécialement conçues pour étudier facilement
Des millions de fiches spécialement conçues pour étudier facilement

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Vitesse angulaire?
Ask our AI Assistant

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Vitesse angulaire

  • Temps de lecture: 8 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Définition de la vitesse angulaire

    De la même façon que nous apprenons d'abord la position et le déplacement avant d'apprendre la vitesse, nous devons d'abord définir la position angulaire pour pouvoir parler de la vitesse angulaire.

    Position angulaire

    La position ang ulaire d'un objet par rapport à un point et à une ligne de référence est l'angle entre cette ligne de référence et la ligne qui passe à la fois par le point et l'objet.

    Ce n'est pas la définition la plus intuitive, alors regarde l'illustration ci-dessous pour avoir une idée claire de ce que l'on entend par là.

    Vitesse angulaire Position angulaire StudySmarter

    Nous voyons que les distances absolues n'ont pas d'importance pour la position angulaire, mais seulement les rapports de distances : nous pouvons remettre à l'échelle toute cette image et la position angulaire de l'objet ne changerait pas.

    Si quelqu'un marche directement vers toi, sa position angulaire par rapport à toi ne change pas (quelle que soit la ligne de référence que tu choisis).

    Vitesse angulaire

    La vitesse angulaire d'un objet par rapport à un point est une mesure de la vitesse à laquelle cet objet se déplace dans le champ de vision du point, c'est-à-dire de la vitesse à laquelle la position angulaire de l'objet change.

    La vitesse angulaire d'un objet par rapport à toi correspond à la vitesse à laquelle tu dois tourner la tête pour continuer à regarder directement l'objet.

    Remarque qu'il n'est pas fait mention d'une ligne de référence dans cette définition de la vitesse angulaire, car nous n'en avons pas besoin.

    Vitesse angulaire Démonstration de la vitesse angulaire StudySmarterDémonstration de la vitesse angulaire d'un smiley par rapport à son centre, adaptée de l'image de Sbyrnes321 Domaine public.

    Unités de vitesse angulaire

    D'après la définition, nous voyons que la vitesse angulaire est mesurée en un angle par unité de temps. Comme les angles n'ont pas d'unité, les unités de vitesse angulaire sont les inverses des unités de temps. Ainsi, l'unité standard pour mesurer les vitesses angulaires est \(s^{-1}\). Comme un angle est toujours accompagné de sa mesure sans unité, par exemple les degrés ou les radians, une vitesse angulaire peut s'écrire de la façon suivante :

    \[\omega=\dfrac{xº}{s}=\dfrac{y\,\mathrm{rad}}{s}=y\dfrac{\mathrm{rad}}{s}\]

    Ici, nous avons la conversion familière entre les degrés et les radians sous la forme \(\dfrac{x}{360}=\dfrac{y}{2\pi}\), ou \(y=\dfrac{\pi}{180}x\).

    N'oublie pas que les degrés peuvent être intuitifs et qu'il est bien d'utiliser les degrés pour exprimer les angles, mais dans les calculs (par exemple ceux des vitesses angulaires), tu dois toujours utiliser les radians.

    Formule de la vitesse angulaire

    Examinons une situation qui n'est pas trop compliquée : supposons qu'une particule se déplace en cercle autour de nous. Ce cercle a un rayon \(r\) (qui est la distance entre nous et la particule) et la particule a une vitesse \(v\). Évidemment, la position angulaire de cette particule change avec le temps en raison de sa vitesse circulaire, et la vitesse angulaire \(\oméga\) est maintenant donnée par

    \[\omega=\dfrac{v}{r}\]

    Il est essentiel d'utiliser les radians dans les unités de vitesse angulaire lorsque l'on traite des équations. Si on te donne une vitesse angulaire exprimée en degrés par unité de temps, la première chose à faire est de la convertir en radians par unité de temps !

    Il est maintenant temps d'examiner si cette équation a un sens. Tout d'abord, la vitesse angulaire double si la vitesse de la particule double, ce qui est normal. Cependant, la vitesse angulaire double également si le rayon de la particule est divisé par deux. C'est vrai parce que la particule n'aura à parcourir que la moitié de la distance initiale pour faire un tour complet de sa trajectoire, elle n'aura donc besoin que de la moitié du temps (parce que nous supposons une vitesse constante lorsque nous divisons le rayon par deux).

    Ton champ de vision correspond à un certain angle (qui est approximativement \N(180º\N) ou \N(\Npi\N,\Nmathrm{rad}\N)), donc la vitesse angulaire d'un objet détermine complètement la vitesse à laquelle il se déplace dans ton champ de vision. L'apparition du rayon dans la formule de la vitesse angulaire est la raison pour laquelle les objets éloignés se déplacent beaucoup plus lentement dans ton champ de vision que les objets qui sont proches de toi.

    De la vitesse angulaire à la vitesse linéaire

    À l'aide de la formule ci-dessus, nous pouvons également calculer la vitesse linéaire d'un objet (v) à partir de sa vitesse angulaire (\oméga) et de son rayon (r) de la façon suivante :

    \[v=\omega r\]

    Cette formule pour la vitesse linéaire n'est qu'une manipulation de la formule précédente, nous savons donc déjà que cette formule est logique. Encore une fois, assure-toi d'utiliser les radians dans les calculs, donc aussi lors de l'utilisation de cette formule.

    En général, on peut dire que la vitesse linéaire d'un objet est directement liée à sa vitesse angulaire par le biais du rayon de la trajectoire circulaire qu'il suit.

    Vitesse angulaire de la Terre

    Vitesse angulaire rotation axe de la terre StudySmarterRotation de la Terre autour de son axe, accélérée, Wikimedia Commons CC BY-SA 3.0.

    Un bel exemple de vitesse angulaire est la Terre elle-même. Nous savons que la Terre effectue une rotation complète de 360° toutes les 24 heures.ωd'un objet sur l'équateur de la Terre par rapport au milieu de la Terre est donnée par

    \[\omega=\dfrac{360º}{24\,\mathrm{h}}\]

    \[\omega=\dfrac{2\pi}{24}\dfrac{\mathrm{rad}}{\mathrm h}\]

    Note que nous avons immédiatement converti en radians pour notre calcul.

    Le rayon de la Terre est \(r=6378\,\mathrm{km}\), nous pouvons donc maintenant calculer la vitesse linéaire \(v\) d'un objet sur l'équateur de la Terre en utilisant la formule que nous avons introduite plus tôt :

    \[v=\omega r\]

    \[v=\dfrac{2\pi}{24}\dfrac{\mathrm{rad}}{\mathrm h}·6378\,\mathrm{km}\]

    \[v=1670\,\dfrac{\mathrm{km}}{\mathrm h}=464\,\dfrac{\mathrm{m}}{\mathrm s}\]

    Vitesse angulaire des voitures sur un rond-point

    Supposons qu'un rond-point à Dallas soit un cercle parfait centré sur le centre-ville avec un rayon de \(r=11\N,\Nmathrm{mi}\N) et que la limite de vitesse sur ce rond-point soit de \N(45\N,\Nmathrm{mi/h}\N). La vitesse angulaire d'une voiture roulant sur cette route à la vitesse limite par rapport au centre-ville est alors calculée comme suit :

    \[\omega=\dfrac{v}{r}\]

    \[\omega=\dfrac{45\,\mathrm{mi/h}}{11\,\mathrm{mi}}\]

    \[\omega=4.1\,\mathrm{h}^{-1}\]

    \[\omega=4.1\,\mathrm{rad/h}\]

    Si nous le voulons, nous pouvons convertir ce chiffre en degrés :

    \[4.1\,\mathrm{rad/h}=\dfrac{235º}{\mathrm{h}}\]

    Vitesse angulaire - Principaux points à retenir

    • La vitesse angulaire d'un objet par rapport à un point est une mesure de la vitesse à laquelle cet objet se déplace dans le champ de vision du point, c'est-à-dire de la vitesse à laquelle la position angulaire de l'objet change.
    • Les unités de la vitesse angulaire sont celles de l'inverse du temps.
      • Pour écrire la vitesse angulaire, on peut utiliser des degrés par unité de temps ou des radians par unité de temps.
      • Lorsque l'on fait des calculs avec des angles, on utilise toujours des radians.
    • La vitesse angulaire \(\omega\) est calculée à partir de la vitesse (linéaire) \(v\) et du rayon \(r\) comme \(\omega=\dfrac{v}{r}\).
      • C'est logique car plus une chose va vite et plus elle est proche de nous, plus elle se déplace rapidement dans notre champ de vision.
    • Nous pouvons calculer la vitesse linéaire à partir de la vitesse angulaire et du rayon par \(v=\omega r\).
    • La vitesse angulaire de la rotation de la Terre autour de son axe est \(\dfrac{2\pi}{24}\dfrac{\mathrm{rad}}{\mathrm{h}}\).
    Questions fréquemment posées en Vitesse angulaire
    Qu'est-ce que la vitesse angulaire en physique?
    La vitesse angulaire est la mesure du taux de rotation d'un objet autour d'un axe. Elle est généralement exprimée en radians par seconde.
    Comment calcule-t-on la vitesse angulaire?
    La vitesse angulaire se calcule en prenant l'angle de rotation (en radians) divisé par le temps nécessaire pour cette rotation.
    Quelle est la différence entre la vitesse angulaire et la vitesse linéaire?
    La vitesse angulaire concerne le taux de rotation, tandis que la vitesse linéaire concerne la vitesse de déplacement le long d'une trajectoire linéaire.
    Pourquoi la vitesse angulaire est-elle importante?
    La vitesse angulaire est cruciale pour comprendre les mouvements circulaires et rotatifs dans divers systèmes physiques, des engrenages aux planètes.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Supposons qu'une voiture se déplaçant à \(70\,\mathrm{mph}\) passe devant toi. Sa vitesse angulaire maximale par rapport à toi sera-t-elle plus grande ou plus petite si elle passe plus près ?

    La vitesse angulaire de quelque chose qui s'éloigne directement de toi est-elle nulle ou non nulle ?

    La vitesse angulaire de quelque chose qui se déplace en ligne droite et qui ne te touche pas est-elle nulle ou non nulle ?

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Physique-chimie

    • Temps de lecture: 8 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !