Résistance de l'air

Mobile Features AB

As-tu déjà eu l'impression que quelque chose essayait de te ralentir lorsque tu fais du vélo ? Lorsque tu te déplaces dans le sens de la marche, la force de frottement exercée par l'air a tendance à réduire ta vitesse. La force de frottement agit sur ton visage et ton corps dans la direction opposée au mouvement du vélo. La force de résistance de l'air augmente proportionnellement à la vitesse. Le fait de t'accroupir sur le vélo te permet de diminuer l'effet de la force de résistance de l'air et de te déplacer plus rapidement.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air est une force conservatrice.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air augmente avec la vitesse.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air s'oppose au mouvement relatif d'un objet lorsqu'il se déplace dans l'air.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsqu'une force nette est appliquée à l'objet, la condition terminale est atteinte.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La vitesse terminale est définie comme la vitesse maximale atteinte par un objet se déplaçant sous l'influence d'une force constante.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Qu'arrive-t-il à la constante de proportionnalité \(k\) si nous augmentons la densité du milieu ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air agit sur un avion en papier lancé en l'air.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air agit sur un parachutiste qui tombe vers le bas.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux parachutistes ayant à peu près le même poids sautent simultanément d'un avion. Après environ une minute de chute libre, ils ouvrent tous les deux leur parachute. Le parachutiste \(X\) a un parachute dont la surface est égale à \(A\), tandis que le parachute du second parachutiste \(Y\) est deux fois plus grand (c'est-à-dire \(2 \, A\)). Lequel des deux atterrira en premier ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Passer ta main par la fenêtre d'une voiture qui roule rapidement et sentir la force exercée sur elle par l'air ambiant est un exemple de résistance de l'air.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lequel de ces paramètres a un impact sur la constante de proportionnalité \(k\) dans l'équation de la résistance de l'air \(\vec{F} = - k \vec{v}\)?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air est une force conservatrice.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air augmente avec la vitesse.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air s'oppose au mouvement relatif d'un objet lorsqu'il se déplace dans l'air.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsqu'une force nette est appliquée à l'objet, la condition terminale est atteinte.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La vitesse terminale est définie comme la vitesse maximale atteinte par un objet se déplaçant sous l'influence d'une force constante.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Qu'arrive-t-il à la constante de proportionnalité \(k\) si nous augmentons la densité du milieu ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air agit sur un avion en papier lancé en l'air.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La résistance de l'air agit sur un parachutiste qui tombe vers le bas.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux parachutistes ayant à peu près le même poids sautent simultanément d'un avion. Après environ une minute de chute libre, ils ouvrent tous les deux leur parachute. Le parachutiste \(X\) a un parachute dont la surface est égale à \(A\), tandis que le parachute du second parachutiste \(Y\) est deux fois plus grand (c'est-à-dire \(2 \, A\)). Lequel des deux atterrira en premier ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Passer ta main par la fenêtre d'une voiture qui roule rapidement et sentir la force exercée sur elle par l'air ambiant est un exemple de résistance de l'air.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lequel de ces paramètres a un impact sur la constante de proportionnalité \(k\) dans l'équation de la résistance de l'air \(\vec{F} = - k \vec{v}\)?

Afficer la réponse

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Résistance de l'air

  • Temps de lecture: 21 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:21 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:21 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Tu peux maintenant penser que la force de résistance de l'air est quelque chose de négatif et qu'elle empêche le mouvement, mais en fait, elle s'avère très utile dans notre vie de tous les jours. Par exemple, lorsqu'un parachutiste saute d'un avion et ouvre son parachute, l'air ralentit sa chute. La vitesse du parachutiste diminue à l'approche du sol, en raison de la résistance offerte par l'air. Par conséquent, la personne atteint la terre ferme en toute sécurité et en douceur - tout cela grâce à la force de résistance. Dans cet article, nous discuterons plus en détail de la science qui sous-tend la résistance de l'air.

    Qu'est-ce que la résistance de l'air ?

    Jusqu'à présent, dans la plupart des problèmes de physique impliquant un mouvement, il est explicitement indiqué que la résistance de l'air est négligeable. Dans la réalité, ce n'est pas le cas, car tous les objets subissent un certain niveau de résistance lorsqu'ils traversent l'air.

    Larésistance de l'air ou force de traînée est un type de frottement qui se produit entre un objet et l'air qui l'entoure.

    La friction est le nom de la force qui s'oppose au mouvement et agit entre des objets qui se déplacent à une certaine vitesse relative l'un par rapport à l'autre. vitesse relative l'un par rapport à l'autre.

    La traînée et la résistance de l'air sont également des types de friction, mais le mot est généralement utilisé pour désigner la façon dont un objet est ralenti lorsqu'il se déplace contre une surface rugueuse ou la façon dont des surfaces rugueuses se déplaçant l'une contre l'autre ralentissent. Ces forces de traînée font que l'objet se déplace plus lentement en agissant dans la direction du flux entrant et sont proportionnelles à la vitesse. Il s'agit d'un type de force non conservatrice puisqu'elle fait se dissiper l'énergie.

    Les forces de frottement entre les surfaces se produisent parce qu'elles ne sont pas parfaitement lisses. Si tu les observais à l'échelle microscopique, tu verrais beaucoup de petites bosses et une surface inégale. Lorsque les surfaces glissent l'une sur l'autre, elles se coincent un peu parce qu'elles ne sont pas complètement plates et une force est nécessaire pour les pousser l'une vers l'autre. Comme les surfaces sont obligées de bouger, elles peuvent s'abîmer un peu.

    Ce raisonnement s'applique également lorsque des objets se déplacent dans des fluides (gaz et liquides). Comme nous l'avons mentionné plus haut, le type de frottement qui agit lorsqu'un objet se déplace dans un fluide s'appelle drag. Par exemple, pour nager dans l'eau, tu dois pousser l'eau hors de ton chemin et lorsque tu avances, elle se déplace contre ton corps en provoquant une force de traînée, ce qui a pour effet de te ralentir.

    La résistance de l'air est le nom donné à la traînée qui agit sur un objet lorsqu'il se déplace dans l'air. Son effet est beaucoup plus faible que celui de la résistance de l'eau, car l'air est beaucoup moins dense que l'eau et contient donc beaucoup moins de particules par unité de volume ; il est donc plus facile de l'écarter. Les avions subissent la résistance de l'air lorsqu'ils volent, mais cette résistance peut être utilisée à leur avantage car ils peuvent être façonnés de manière à ce que l'air autour d'eux soit déformé de façon à les soulever, comme le montre le diagramme ci-dessus.

    Supposons que nous ayons une balle de masse \(m\). Nous la laissons tomber et, en tombant, elle va subir une force de résistance. La force de résistance est mathématiquement égale à

    $$ \vec{F}_{\mathrm{r}} = - k \vec{v} $$

    où \(k\) est une constante positive, et \(v\) est la vitesse de l'objet par rapport au milieu. Le signe négatif indique que la force de résistance est dans la direction opposée à la vitesse.

    À ce stade de ton apprentissage, connaître cette version de l'équation de la force résistive est suffisant, mais une représentation plus précise et plus réaliste de la résistance de l'air serait donnée par \(\vec{F}_{\mathrm{r}} = - k \vec{v}^2\). En savoir plus sur ce sujet dans la plongée profonde !

    Dans la littérature, tu verras probablement une version modifiée de cette équation avec le terme de vitesse au carré

    $$ \vec{F}_{\mathrm{r}} = - k \vec{v}^2.$$

    C'est parce que la résistance dépend du type d'écoulement. L'écoulement turbulent est connu pour être rapide et nécessite l'utilisation de \(\vec{v}^2\), tandis que l'écoulement laminaire est lent et utilise \(\vec{v}\). Les termes "lent" et "rapide" étant relatifs, il faut tenir compte d'une quantité sans dimension connue sous le nom de nombre de Reynolds, dont les valeurs faibles correspondent à un écoulement laminaire, et les valeurs élevées à un écoulement turbulent. Les exemples de la vie réelle, tels que le saut en parachute et l'écoulement du sang dans nos artères, sont des événements d'écoulement à grande vitesse, et nécessiteraient donc l'utilisation de \ (\vec{v}^2\). Malheureusement, une analyse aussi approfondie de la résistance de l'air dépasse le niveau de l'AP Physics, c'est pourquoi nous considérerons que la résistance de l'air est linéaire par rapport à la vitesse de l'air.

    Coefficient de résistance de l'air

    Comme nous l'avons vu précédemment, \(k\) est une constante de proportionnalité. Sa valeur est déterminée par les propriétés du milieu et les caractéristiques uniques de l'objet. Les principaux facteurs contributifs sont la densité du milieu, la surface de l'objet et une quantité sans dimension connue sous le nom de coefficient de résistance .Dans un exemple réel impliquant un parachutiste, le milieu serait l'air et la surface ferait référence soit au parachutiste, soit au parachute.

    Nous pouvons maintenant expliquer l'efficacité d'un parachute lorsqu'il s'agit de ralentir un parachutiste. Lorsque la surface \(A\) de l'objet qui tombe augmente,

    $$ A_{\mathrm{skydiver}} \ll A_{\mathrm{parachute}},$$

    \(k\) augmente, donc l'ampleur de la force de résistance augmente également, ce qui ralentit la chute de l'objet.

    L'expression complète utilisée pour calculer la force de résistance est la suivante

    $$\vec{F}_\mathrm{r} = \frac{1}{2} D \rho A \vec{v}^2$$

    où \(D\) est le coefficient de traînée, \(\rho\) est la densité du milieu, \(A\) est la surface de l'objet, et \(\vec{v}\) est la vitesse.

    Examinons un diagramme de corps libre pour mieux comprendre son mouvement.

    Diagramme de corps libre de la résistance de l'air

    Qu'arrive-t-il à un objet lorsqu'il est lâché et qu'il tombe ? Il subit une force vers le bas sous forme de poids et une force de résistance dans la direction opposée du mouvement en raison de la résistance de l'air, toutes deux visualisées dans le diagramme de corps libre visible ci-dessous.

    Résistance de l'air Image d'un objet en train de tomber, avec la force de traînée dirigée vers le haut et le poids dirigé vers le bas StudySmarterFig. 1 - Lorsque l'objet tombe, la force de résistance agit sur lui vers le haut, tandis que le poids le tire vers le bas.

    Selon la deuxième loi de Newton, la force nette agissant sur un objet \(\vec{F}_{\mathrm{net}}\) est égale à la masse \(m\) de l'objet multipliée par son accélération \(\vec{a}\). Sachant tout cela, nous pouvons obtenir l'expression suivante

    $$ m\vec{g} - k\vec{v} = m\vec{a}.$$

    Lorsque nous commençons le mouvement à \(t=0\), sa vitesse initiale est \(\vec{v}_0=0\), par conséquent, la force de résistance initiale de l'air est également nulle. Au fur et à mesure que le temps passe et que l'objet commence à se déplacer, il finit par atteindre une vitesse constante, appelée vitesse terminale \(\vec{v}_\mathrm{T}\). Comme la vitesse est constante, l'accélération sera nulle. Le côté droit de l'expression devient nul, et nous pouvons réarranger les termes restants

    $$ m\vec{g} = k\vec{v}_\mathrm{T} $$

    pour trouver l'équation de la vitesse terminale

    $$ \vec{v}_\mathrm{T}= \frac{m\vec{g}}{k}. $$

    Lavitesse terminale est la vitesse maximale atteinte par un objet se déplaçant sous l'influence d'une force constante et d'une force de résistance qui s'exerce sur l'objet dans des directions opposées.

    La vitesse terminale est atteinte lorsqu'aucune force nette n'est appliquée à l'objet, ce qui signifie que l'accélération est nulle. Examinons un exemple de problème impliquant la vitesse terminale.

    Formule de la résistance de l'air

    Trouvons maintenant la vitesse en fonction du temps. Pour cela, nous devons convertir la deuxième loi de Newton en une équation différentielle. L'accélération est la dérivée première de la vitesse, donc \(\vec{a}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}\). Nous pouvons alors écrire

    $$ m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=m\vec{g}-k\vec{v}. $$

    Séparons nos variables :

    $$ \frac{\mathrm{d}v}{mg- kv}=\frac{\mathrm{d}t}{m}.$$

    Pour effectuer toutes les opérations mathématiques nécessaires, nous ne considérerons pour l'instant qu'une seule dimension et nous considérerons les quantités vectorielles comme des scalaires.

    Ici, il est important de fixer les limites de l'intégration. Le temps va de zéro au temps \(t_{mathrm{f}}}). Lorsque le temps est égal à zéro, notre vitesse initiale est également nulle, et lorsque le temps passe à \ (t_{\mathrm{f}}\), notre vitesse devient la vitesse \(v_{\mathrm{f}}\).

    La raison pour laquelle nous ne fixons pas la limite supérieure comme étant la vitesse terminale est que nous essayons de trouver la vitesse en fonction du temps !

    $$\int_{0}^{v_\mathrm{f}} \frac{\mathrm{d}v}{mg-kv} = \int_{0}^{t_{\mathrm{f}}} \frac{\mathrm{d}t}{m}$$

    En prenant l'antidérivée, on obtient un logarithme naturel

    $$\left.\frac{\ln(mg-kv)}{-k}\right|_0^{v_\mathrm{f}} = \left.\frac{t}{m}\right|_0^{t_\mathrm{f}}$$

    Appliquons maintenant les limites

    $$ \begin{align} \frac{\ln(mg-kv_{\mathrm{f}})}{-k} - \frac{\ln(mg)}{-k} & = \frac{t_{\mathrm{f}}}{m}, \\ln \left ( \frac{mg-kv_{\mathrm{f}}{mg} \right ) & = \frac{-kt_{\mathrm{f}}{m}. \n-{align} $$

    Enfin, débarrasse-toi du logarithme naturel :

    $$ \begin{align} \mathrm{e}^{\ln \left ( \frac{mg- kv_{\mathrm{f}}{mg} \right )} &= \mathrm{e}^{\frac{-kt_{\mathrm{f}}{m}}. \\ \frac{mg-kv_{\mathrm{f}}}{mg} &= \mathrm{e}^{\frac{-kt_{\mathrm{f}}}{m}} \\N- 1- \Nfrac{kv_{\mathrm{f}}{mg}&= \Nmathrm{e}^{\frac{-kt_{\mathrm{f}}{m}} \\N- \N{kv_{\mathrm{f}}{mg} & = 1- \nathrm{e}^{\frac{-kt_{\mathrm{f}}{m}} \\N- v_{\mathrm{f}} &= \frac{mg}{k} \left ( 1-\mathrm{e}^{\frac{-kt_{mathrm{f}}}{m}} \right ). \Nend{align} $$

    La version finale de l'équation incluant toutes les valeurs vectorielles est la suivante.

    $$ \vec{v_{\mathrm{f}}}=\vec{v}_\mathrm{T} \, (1-\mathrm{e}^{-\frac{t_{\mathrm{f}}}{T}}) $$

    où \(T\) est la constante de temps et est égale à \(\frac{m}{k}\).

    Et voilà comment nous dérivons l'expression de la vitesse en fonction du temps ! L'équation finale confirme nos conclusions précédentes sur la vitesse terminale. Si la valeur de \(t_{\mathrm{f}}\) est fixée à zéro, \(\vec{v_{\mathrm{f}}\) sera également zéro, tandis que si \(t_{\mathrm{f}}\) est fixée à quelque chose d'énorme, disons à l'infini, nous aurons \(\vec{v_{\mathrm{f}}} = \vec{v_\mathrm{T}}\).

    Mais que se passerait-il si la vitesse initiale n'était pas nulle ?

    Disons que nous avons une voiture avec une vitesse initiale \(\vec{v}_0\) contre une force de résistance \(\vec{F}_\mathrm{r}\) qui est à nouveau égale à \(-k\vec{v}\). Lorsque nous dessinons un diagramme de corps libre de la voiture, le poids est vers le bas, la force normale est vers le haut et la force de résistance de l'air est dans la direction opposée au mouvement.

    Dans ce cas, la vitesse finale sera nulle et la voiture s'arrêtera. La seule force agissant sur l'objet dans la direction du mouvement est la force de résistance, elle sera donc notre force nette. Nous pouvons alors écrire

    $$ m\vec{a} = -k\vec{v}.$$

    Nous allons répéter la même procédure que précédemment puisque cela devient une équation différentielle lorsque nous écrivons l'accélération sous la forme \(\vec{a}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}\) et que nous obtenons

    $$ \begin{align} m \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} & = - k\vec{v} \frac{\mathrm{d}v}{v} & =\frac{-k}{m} \mathrm{d}t. \Nend{align}$$

    Une fois de plus, pour les calculs, nous considérerons la version scalaire de l'équation. Ici, nous devons prendre les intégrales des deux côtés, mais d'abord, nous devons décider des limites. Le temps passe une fois de plus de zéro à \(t\). Cependant, nous avons maintenant une vitesse initiale, donc notre limite de vitesse va de \(v_0\) à \(v\)

    $$\int_{v_0}^{v_{\mathrm{f}}} \frac{\mathrm{d}v}{v} = \int_{0}^{t_{\mathrm{f}}} \frac{-k}{m} \mathrm{d}t. $$

    Prends à nouveau la dérivée pour obtenir un logarithme naturel, applique les limites et obtiens l'expression suivante

    $$ \ln \left ( \frac{v_{\mathrm{f}}}{v_0} \right ) = \frac {-kt_{\mathrm{f}}{m}.$$

    Nous pouvons réécrire ceci comme suit :

    $$ \begin{align} \mathrm{e}^{\ln \left (\frac{v_{\mathrm{f}}{v_0} \right )} & = \mathrm{e}^{\frac{-kt_{\mathrm{f}}{m}}. \\N- \Nfrac{v_{\mathrm{f}}{v_0} & =\mathrm{e}^{\frac{-kt_{\mathrm{f}}}{m}}. \end{align}}$$

    où l'expression finale incluant toutes les quantités vectorielles devient

    $$ \vec{v_{\mathrm{f}}} = \vec{v}_0 \mathrm{e}^{\frac{-kt_{\mathrm{f}}}{m}}.$$

    Exemple de résistance de l'air

    Examinons un exemple de problème impliquant le même parachutiste que celui mentionné plus haut, afin de vérifier nos connaissances !

    Un parachutiste tombe à la vitesse initiale \(\vec{v}_0\) dans l'air. À ce moment-là (\(t = 0\)), il ouvre le parachute et subit la force de résistance de l'air dont l'intensité est donnée par l'équation \(\vec{F} = -k\vec{v}\), où les variables sont les mêmes que celles définies précédemment. La masse totale du parachutiste et de l'équipement est de \(m\).

    Détermine l'expression de l'accélération du parachutiste, sa vitesse terminale, et fais un graphique de la vitesse en fonction du temps.

    Solution

    Nous savons que

    $$ \vec{F}_{\mathrm{net}} = \vec{F}_\mathrm{g} - \vec{F}_\mathrm{r} $$

    En considérant le diagramme du corps libre expliqué plus haut, nous pouvons donc trouver l'expression de l'accélération

    $$ \begin{align} m\vec{a} & = m\vec{g} - k\vec{v}, \\vec{a} & = \frac{m\vec{g} - k\vec{v}}{m}.\end{align}$$$.

    D'après la définition précédente, le parachutiste atteindra sa vitesse terminale lorsque la vitesse sera constante (\(\vec{v} = \vec{v}_\mathrm{T}\)). Cela signifie que l'accélération devient nulle

    $$ 0 = \frac{m\vec{g} - k\vec{v}_\mathrm{T}{m} $$

    ce qui se réarrange en

    $$ \vec{v}_\mathrm{T} = \frac{m\vec{g}}{k}.$$

    Utilisons maintenant cette expression pour tracer le graphique vitesse-temps.

    Résistance de l'air Tracé de la vitesse en fonction du temps montrant les changements de vitesse d'un parachutiste lorsqu'il part de la vitesse initiale et s'approche de la vitesse terminale. La pente de ce graphique représente l'accélération, qui n'est pas linéaire StudySmarterFig. 3 - Les changements de vitesse depuis la descente initiale du parachutiste jusqu'à ce qu'il s'approche de la vitesse terminale au fil du temps. La pente de ce graphique représente l'accélération du parachutiste.

    Au départ, le parachutiste descend à la vitesse \(\vec{v}_0\) et accélère à peu près à l'accélération gravitationnelle \(\vec{g}\). Lorsque le parachute est libéré, le parachutiste est soumis à une force de résistance considérable - la résistance de l'air. L'accélération due à la force de résistance se traduit par une accélération vers le haut, de sorte que la vitesse vers le bas diminue. Le gradient de notre courbe de vitesse en fonction du temps représente l'accélération. D'après les observations précédentes, elle ne sera pas constante, mais s'approchera plutôt de zéro lorsque la vitesse atteindra la vitesse terminale \(\vec{v}_\mathrm{T}\). Par conséquent, le tracé n'est pas linéaire.

    Voici d'autres exemples de résistance de l'air dans notre vie quotidienne

    1. Marcherdans une tempête rend la marche difficile assez fréquemment. L'individu qui marche contre le vent éprouve une résistance importante, ce qui rend la marche difficile. C'est pour la même raison qu'il est difficile de tenir un parapluie dans la main lorsqu'il y a un vent fort.

    2. Une plume qui tombe sur le sol a tendance à flotter et à se déplacer lentement, plutôt que de tomber en quelques secondes comme d'autres objets d'une masse légèrement supérieure. La force gravitationnelle attire la plume vers la terre ; cependant, la force de résistance de l'air empêche la plume de tomber ou de se déplacer lorsqu'elle est en mouvement.

    3. Lesavions en papier, s'ils sont construits correctement, volent sans effort dans les airs. Pour y parvenir, la surface avant de l'avion en papier est affûtée. Ainsi, l'avion en papier coupe l'air et échappe à la force de résistance de l'air juste assez pour le maintenir en l'air plus longtemps.

    4. Le moteur, les ailes et les hélices d'un véritable avion sont tous construits pour fournir une poussée suffisante pour aider l'avion à surmonter la force de résistance de l'air. Les turbulences sont également causées par le frottement de l'air. Les engins spatiaux, quant à eux, n'ont à se soucier de la résistance de l'air que lors du lancement et de l'atterrissage, car il n'y a pas d'air dans l'espace.

    Friction et résistance de l'air

    Rappelle-toi que la résistance de l'air est un type de frottement qui se produit dans l'air, et que la traînée est un type de frottement qui se produit dans les liquides.

    Similitudes entre la friction et la résistance de l'air

    Bien que le frottement entre les surfaces solides et la résistance de l'air semblent très différents, ils sont très similaires et peuvent être liés l'un à l'autre de nombreuses façons :

    • Friction entre les surfaces solides et la résistance de l'air s'opposent toutes deux au mouvement.
    • Ils font tous deux perdre de l'énergie aux objets, ce qui les ralentit.
    • Ils provoquent tous deux une production de chaleur - les objets perdent de l'énergie lorsqu'ils libèrent de l'énergie thermique.
    • La résistance de l'air et le frottement agissent en permanence. Dans certaines situations, leurs effets sont si faibles qu'ils peuvent être négligés, mais il y a toujours au moins une force de résistance qui agit sur les objets en mouvement.

    Différences entre la friction et la résistance de l'air

    • La résistance de l'air agit lorsqu'un objet se déplace dans l'air (la traînée est le terme plus général pour la force résistive agissant sur un objet se déplaçant dans un fluide) et le processus généralement appelé "frottement" se produit entre les solides (bien que la résistance de l'air soit également un type de frottement).

    • La résistance de l'air dépend souvent de la vitesse de l'objet, la relation entre la force et la vitesse peut changer dans différentes situations en fonction d'autres facteurs. Le frottement entre des surfaces solides ne dépend pas de la vitesse relative des surfaces.
    • La résistance de l'air augmente à mesure que la surface de la section perpendiculaire à la direction du mouvement augmente. La surface n'a pas d'incidence sur le frottement entre les solides.
    • Le frottement entre un objet et une surface dépend du poids de l'objet.
    Tableau 1. Résumé des similitudes et des différences entre la résistance de l'air et la friction.
    SimilitudesDifférences
    S'oppose au mouvementÉléments impliqués (liquide/gaz vs solides)
    Entraîne une perte d'énergieVitesse de l'objet en mouvement (importante ou non)
    Produit de la chaleurLa surface de la section transversale de l'objet en mouvement (importante ou non)
    Agit constammentLe poids de l'objet (importe ou n'importe pas)

    Résistance de l'air - Points clés

    • Les forces qui s'opposent au mouvement relatif d'un objet lorsqu'il se déplace dans l'air sont appelées résistance de l'air.
    • Ces forces de résistance font que l'objet se déplace plus lentement en agissant dans le sens du flux entrant et sont proportionnelles à la vitesse.
    • L'expression mathématique de la résistance de l'air est \( \vec{F}_\mathrm{r} = - k \vec{v}\), où le signe négatif indique la direction opposée du mouvement.
    • La vitesse terminale est définie comme la vitesse maximale atteinte par un objet se déplaçant sous l'influence d'une force constante et d'une force de résistance qui s'exerce sur l'objet dans des directions opposées.
    • Lorsqu'aucune force nette n'est appliquée à l'objet, ce qui signifie que l'accélération est nulle, l'état terminal est atteint.
    • Voici quelques exemples de résistance à l'air : marcher dans la tempête, une plume qui tombe sur le sol, un avion en papier, un avion, un parachutiste qui utilise un parachute et faire du vélo.
    Questions fréquemment posées en Résistance de l'air
    Qu'est-ce que la résistance de l'air?
    La résistance de l'air est une force opposée au mouvement d'un objet à travers l'air.
    Quels facteurs influencent la résistance de l'air?
    La résistance de l'air dépend de la vitesse, de la taille, de la forme et de la densité de l'air.
    Comment réduire la résistance de l'air?
    Pour réduire la résistance de l'air, on peut utiliser des formes aérodynamiques et des matériaux lisses.
    Pourquoi la résistance de l'air est-elle importante?
    La résistance de l'air est importante car elle affecte la vitesse et l'efficacité des objets en mouvement, comme les voitures et les avions.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    La résistance de l'air est une force conservatrice.

    La résistance de l'air augmente avec la vitesse.

    La résistance de l'air s'oppose au mouvement relatif d'un objet lorsqu'il se déplace dans l'air.

    Suivant
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Physique-chimie

    • Temps de lecture: 21 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !