Nous utilisons des miroirs tout le temps dans la vie moderne - dans des situations évidentes comme le miroir de la salle de bain, et dans des applications moins connues comme le système complexe de lentilles et de miroirs à l'intérieur d'un projecteur. Bien que l'apparence de voir un objet dans un miroir soit banale pour la plupart des gens, il est important de comprendre le comportement de la lumière qui crée l'impression d'un espace derrière le miroir pour comprendre ce qui se passe lorsque la lumière interagit avec des surfaces de miroir incurvées. Cet article explique comment utiliser les diagrammes de rayons pour prédire la trajectoire d'un rayon lumineux à travers un système de lentilles et de miroirs, puis étudie comment une image virtuelle se forme dans un miroir plat, et enfin explore comment les miroirs incurvés peuvent former à la fois des images réelles et virtuelles.
Traçage de rayons dans des lentilles et des miroirs
Dessiner les trajectoires de rayons lumineux individuels peut être un moyen utile de visualiser le comportement de la lumière qui interagit avec les lentilles et les miroirs. L'utilisation de la loi de la réflexion et de la loi de la réfraction de Snell nous permet de calculer la direction dans laquelle les rayons de lumière se déplaceront et de les dessiner dans un diagramme de rayons. Pour rappel, les lois sont les suivantes.
Loi de la réflexion
Pour un rayon lumineux rebondissant sur une surface, l'angle d'incidence est égal à l'angle de réflexion, mesuré à partir d'un axe perpendiculaire à la surface à l'endroit où le rayon frappe. Ces deux angles sont représentés par \(q\) dans le diagramme ci-dessous.
La loi de la réflexion stipule que l'angle d'incidence est égal à l'angle de réflexion, StudySmarter Originals.
Loi de Snell
La loi de Snell décrit la relation entre l'angle d'incidence et l'angle de réfraction à une frontière entre des matériaux ayant des indices de réfraction différents. Le rapport entre les sinus des angles d'incidence et de réfraction est égal au rapport des vitesses de la lumière dans chaque matériau, et à l'inverse du rapport des indices de réfraction des matériaux.
À l'aide de ces deux lois, nous pouvons prédire le chemin que suivra un rayon de lumière à travers un système de lentilles et/ou de miroirs à l'aide d'un diagramme de rayons.
Exemples de tracés de rayons
Diagrammes de rayons utilisant la loi de la réflexion
Le diagramme des rayons ci-dessous montre un rayon incident se déplaçant à\(45^\circ\) vers un miroir plat positionné sur une pente de\N(10^\Ncirculaire). Calcule l'angle du rayon réfléchi.
Exemple de problème pour la loi de la réflexion, StudySmarter Originals.
Comme le miroir est placé à un angle de \(10^\circ\) par rapport à l'horizontale, nous savons que sa normale (perpendiculaire à la surface) formera un angle de \(10^\circ\) par rapport à la verticale. Nous pouvons tracer cette ligne à partir du point où le rayon frappe le miroir. L'angle d'incidence est l'angle entre le rayon incident et la normale à la surface au point où le rayon frappe. Si le miroir était horizontal, l'axe perpendiculaire serait vertical et l'angle d'incidence serait de \(45^\circ\), car les angles alternatifs entre les lignes parallèles sont égaux.
Cependant, comme l'axe perpendiculaire forme un angle de \(10^\circ\) par rapport à la verticale, l'angle d'incidence est de \(10^\circ\) :
\[q=45^\circ+10^\circ=55^\circ.\]
Par conséquent, nous savons que l'angle de réflexion \(q\N) est également \N(55^\Ncirc) en raison de la loi de la réflexion. Pour déterminer l'angle du rayon réfléchi par rapport aux axes vertical et horizontal, nous devons ajouter l'inclinaison de l'axe perpendiculaire au miroir à l'angle de réflexion que nous avons calculé, à savoir \N(55^\circ.\N) :
\[55^\circ+10^\circ=65^\circ.\]
Cela signifie que le rayon réfléchi se déplace à un angle de \N(65^\circ) par rapport à la verticale, ou \N(25^\circ) par rapport à l'horizontale, comme indiqué ci-dessous.
Exemple de solution pour la loi de la réflexion, StudySmarter Originals.
Diagrammes de rayons utilisant la loi de Snell
Un rayon de lumière traverse l'air (\(n_1=1\)) en direction d'un prisme en verre (\(n_2=1,5\)) comme indiqué ci-dessous. Détermine les angles du rayon lorsqu'il traverse le verre et après être sorti du prisme.
Problème d'exemple de la loi de Snell - un rayon lumineux s'approche d'un prisme en verre à un angle de 30 degrés par rapport à la normale à la surface. StudySmarter Originals.
L'angle d'incidence \(\theta_1=30^\circ\), nous pouvons donc utiliser la loi de Snell pour calculer l'angle de réfraction \(\theta_2\) à la première limite :
Cela nous permet de calculer l'angle que le rayon parcourt à travers le prisme. Le rayon s'approche du bloc horizontalement (\N(0^\circ\N)) et a un angle de réfraction de \N(19,5^\circ\N) à la première limite. Comme la limite est à une pente de 30°, l'angle que le rayon parcourt à travers le prisme est de 10,5° en dessous de l'horizontale :
\[30^\circ-19.5^\circ=10.5^\circ.\]
En dessinant la trajectoire du rayon, nous constatons que la prochaine limite qu'il frappe est la face droite du prisme, qui est verticale. Cela signifie que l'angle d'incidence est de \(\theta_1=10.5^\circ.\). Nous pouvons alors calculer l'angle de réfraction à cette limite :
Comme la deuxième limite traversée par le rayon est verticale, le rayon sort du prisme en formant un angle de \(15,9^\circ.\N) sous l'horizontale.
Exemple de solution pour la loi de Snell, StudySmarter Originals.
La loi de la réflexion et la loi de Snell peuvent être utilisées ensemble pour calculer les trajectoires des rayons à travers des systèmes plus complexes impliquant à la fois la réflexion et la réfraction. Les mêmes techniques peuvent également être appliquées en trois dimensions à l'aide d'angles 3D, mais dans cet article, nous nous en tiendrons aux problèmes en 2D pour plus de simplicité.
Ray Tracing des réflexions des miroirs
Lorsque l'on regarde un objet dans un miroir plan (plat), l'objet semble être placé quelque part derrière le miroir - mais comment est-ce possible, puisque nous pouvons voir que le miroir est un objet mince et qu'il n'y a pas d'espace physique derrière lui ? La réponse est que l'image que tu vois dans le miroir est virtuelle - elle n'existe pas dans un espace physique réel.
Images virtuelles
Pour déterminer l'image que l'on verra dans un reflet, on peut utiliser le tracé des rayons pour dessiner les chemins que prend chaque rayon de lumière pour arriver à l'œil/à la caméra. Alors que dans la réalité, la lumière se déplace de l'objet vers l'observateur, nous pouvons tracer les trajectoires des rayons lumineux partant de l'observateur pour déterminer les objets sur lesquels ils arrivent. Comme la lumière voyage en ligne droite, ces trajets sont les mêmes pour la lumière voyageant dans les deux sens entre l'objet et l'observateur.
Dans le schéma ci-dessous, un observateur voit une flèche (l'objet) se refléter dans un miroir plan. Nous pouvons tracer les trajectoires des rayons lumineux qui partent de l'observateur, se réfléchissent sur le miroir et arrivent à un point de l'objet réel. Ces trajectoires représentent les chemins réels que les rayons lumineux provenant de l'objet parcourent pour atteindre l'observateur.
Diagramme de rayons montrant comment, lorsqu'un observateur voit un objet dans un miroir, les rayons lumineux semblent converger à partir d'un objet situé derrière le miroir, StudySmarter Originals.
Lorsque les rayons lumineux atteignent l'observateur, ils semblent provenir de l'arrière du miroir. En effet, l'image qu'un observateur perçoit à partir de la lumière qui atteint son œil est interprétée en fonction du fait que la lumière ne se déplace qu'en ligne droite. Cela signifie que les rayons réfléchis sont perçus comme s'étendant à travers la surface du miroir, donnant l'impression de provenir de l'arrière de celui-ci et créant une image virtuelle de l'objet dans le miroir. L'image virtuelle semble se trouver à un déplacement \(i\) derrière le miroir, qui est égal à moins le déplacement perpendiculaire réel entre l'objet et le miroir, \(p\) :
pour les miroirs plans.
Traçage de rayons dans les miroirs concaves et convexes
Comme tu peux t'y attendre, le comportement des réflexions devient plus complexe lorsque nous introduisons des miroirs concaves et convexes incurvés. Cependant, les mêmes principes s'appliquent toujours et nous pouvons utiliser le traçage des rayons pour comprendre ce qui se passe. Nous limiterons cette explication aux miroirs convexes et concaves qui ont la forme d'une petite section d'une surface sphérique, de sorte que leur courbure peut être définie par le rayon \(r\) de la sphère. Dans un miroir concave, \(r\) est positif, dans un miroir convexe, il est négatif, et dans un miroir plan (plat), \(r\) est infini. Le centre de courbure \(C\) est le point central de la sphère imaginaire de rayon \(r\). L'axe central est un axe entre le centre de la surface du miroir et le centre de courbure.
Les miroirs courbes sont également appelés miroirs sphériques, si leur surface a la forme d'une section de sphère.
Les miroirs concaves et convexes ont une section circulaire de rayon \(r\). L'axe central se situe entre le centre de courbure \(C\) et le centre de la surface du miroir, StudySmarter Originals.
Comme nous l'avons constaté précédemment, pour un miroir plan, l'amplitude de la distance de l'image \(i\) est toujours égale à la distance de l'objet \(p\). Voyons si c'est le cas pour les miroirs courbes. Le schéma ci-dessous montre un objet placé devant un miroir concave et un miroir convexe. Si nous traçons les chemins des rayons lumineux émis depuis un point de l'objet jusqu'au miroir et que nous prolongeons leurs réflexions derrière le miroir, nous constatons que la distance de l'image et la distance de l'objet ne sont plus égales.
Les miroirs incurvés peuvent également avoir une forme parabolique - il s'agit d'une surface générée par la rotation d'une parabole autour de son axe. Les miroirs paraboliques sont moins courants que les miroirs sphériques, mais ils sont plus performants - ils focalisent un faisceau de lumière collimaté entrant vers un point focal plus précis, avec moins d'aberration sphérique.
En prolongeant les rayons réfléchis par un objet placé à côté d'un miroir pour trouver leur point de convergence, on peut voir où l'image du miroir apparaîtra. Dans un miroir concave, l'objet est plus grand et plus loin derrière le miroir, tandis que dans un miroir convexe, il est plus petit et plus proche, StudySmarter Originals.
Un miroir convexe crée une image plus petite qui semble plus proche (\(|i|<|p|\)). Cela signifie que le champ de vision est plus grand dans un miroir convexe, car les objets apparaissent plus petits et on peut donc en voir plus que dans un miroir concave de la même taille.
Nous pouvons trouver un moyen de relier le rayon de courbure à la distance entre l'objet et l'image, mais nous devons d'abord établir le point focal des miroirs incurvés. Considère un objet positionné sur l'axe central d'un miroir incurvé, à une grande distance de la surface du miroir. Comme l'objet est éloigné, on peut considérer que les rayons lumineux qu'il émet sont parallèles lorsqu'ils atteignent le miroir, comme le montre le schéma ci-dessous.
Dans un miroir concave, le point focal se trouve devant le miroir, ce qui le rend réel. Dans un miroir convexe, il se trouve derrière le miroir, c'est donc un point focal virtuel, StudySmarter Originals.
En traçant la trajectoire des rayons réfléchis, nous constatons qu'ils se croisent en un point de l'axe central - pour un miroir concave, il s'agit d'un foyer réel devant le miroir, tandis que pour un miroir convexe, il s'agit d'un foyer virtuel derrière le miroir. Comme les rayons réfléchis dans le miroir concave sont les chemins réels parcourus par la lumière, une image de l'objet éloigné serait projetée sur une surface positionnée au point focal. En revanche, si nous plaçons une surface au foyer virtuel du miroir convexe, aucune image n'est projetée car les rayons réels ne se rendent jamais jusqu'à ce point.
Pour les deux types de miroirs incurvés, le point focal est positionné sur l'axe central à la distance focale \(f\) donnée par :
\[f=\frac{1}{2}r.\]
Tout comme la distance entre l'objet et l'image, elle est positive si elle se trouve devant le miroir et négative si elle se trouve derrière le miroir.
Traçage d'images dans des miroirs sphériques
En plaçant un objet à différentes positions autour du point focal d'un miroir incurvé, l'image se comporte de différentes manières, comme le montrent les diagrammes de rayons ci-dessous.
Le comportement de l'image créée par un miroir concave dépend de l'emplacement de l'objet par rapport au point focal. [ gauche] Si l'objet se trouve entre le point focal et le miroir, le miroir crée une image virtuelle. [ Centre] Si l'objet se trouve au point focal, les rayons réfléchis sont parallèles et s'étendent à l'infini sans converger et former une image. [ droite] Si l'objet se trouve à l'extérieur du point focal, le reflet forme une image réelle placée à l'extérieur du point focal du miroir, StudySmarter Originals.
Lorsque l'objet est placé entre le point focal et le miroir, l'observateur voit une image virtuelle de l'objet qui semble être derrière le miroir.
Au fur et à mesure que l'objet s'éloigne du miroir, l'image semble se déplacer plus loin derrière le miroir, jusqu'à ce que l'objet soit positionné au point focal. Cela produit une réflexion avec des rayons parallèles, faisant apparaître l'image à une distance infinie à la fois devant et derrière le miroir. Cependant, cette image est impossible à observer car les rayons réfléchis ne convergent jamais dans un sens ou dans l'autre.
Si l'objet est déplacé en dehors du point focal, les rayons réfléchis convergent maintenant devant le miroir pour produire une image réelle inversée. Si nous placions une surface à l'emplacement de l'image, l'image serait projetée sur cette surface puisque les chemins réels empruntés par les rayons convergent en ce point. C'est le seul scénario dans lequel un miroir peut produire une image réelle.
Les imagesréelles apparaissent lorsque les rayons réfléchis se croisent du même côté du miroir que l'objet, tandis que les images virtuelles se forment lorsque les rayons étendus se croisent derrière le miroir, du côté opposé.
La relation entre la distance de l'objet \(p\), la distance de l'image \(i\) et la distance focale \(f\) est l'équation du miroir:
Cette équation est vraie pour tout miroir concave, convexe ou plan. Pour un miroir plan, la courbure est \(r=\infty\), ce qui signifie également \(f=\infty\).
Ray Tracing Miroirs - Principaux enseignements
Les miroirs convexes et concaves ont la forme d'une section d'une surface sphérique, ce qui signifie que leur courbure peut être définie à l'aide du rayon \(r\). Un miroir plan (miroir plat) peut également être considéré comme un miroir sphérique avec un rayon infini : \(r=\infty\).
Un miroir forme l'image d'un objet au point d'intersection des rayons provenant de l'objet et réfléchis par le miroir. Si les rayons réfléchis divergent, nous les étendons vers l'arrière pour trouver un point d'intersection derrière le miroir. S'ils convergent, les rayons se croiseront en un point situé devant le miroir.
Dans un miroir plan, la distance \(p\) entre la surface du miroir et l'objet est égale à la distance \(i\) entre le miroir et l'image. Dans les miroirs courbes, les distances \(p\) et \(i\) ne sont pas égales.
Si les rayons réfléchis convergent derrière le miroir, l'image formée est virtuelle, c'est-à-dire qu'elle ne peut pas être projetée sur une surface car les rayons réels ne se rendent jamais au point d'intersection. Si les rayons réfléchis convergent devant le miroir, ils forment une image réelle - cette image peut être projetée sur une surface, car les vrais rayons lumineux passent effectivement par le point d'intersection.
Les miroirs concaves forment un foyer réel devant la surface du miroir à une distance focale \(f=\frac{1}{2}r\). Les miroirs convexes forment un foyer virtuel derrière la surface du miroir à \(f=\frac{1}{2}r\).
Les miroirs convexes et plans ne peuvent former qu'une image virtuelle. Les miroirs concaves peuvent former une image réelle lorsque l'objet est placé à l'extérieur du point focal - le seul scénario où une image réelle est formée - ou une image virtuelle s'il est placé à l'intérieur du point focal. Aucune image ne se forme lorsque l'objet se trouve exactement au point focal d'un miroir concave.
La distance de l'objet \(p\), la distance de l'image \(i\), la distance focale \(f\) et le rayon de courbure \(r\) sont liés par l'équation du miroir: \(\frac{1}{p}+\frac{1}{i}=\frac{1}{f}=\frac{2}{r}\).
Apprends plus vite avec les 8 fiches sur Rayonnement rétromiroirs
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Rayonnement rétromiroirs
Qu'est-ce que le rayonnement rétromiroir?
Le rayonnement rétromiroir est un phénomène où les ondes électromagnétiques sont réfléchies vers la source d'origine par des objets avec des surfaces spéciales.
Comment fonctionne le rayonnement rétromiroir?
Le rayonnement rétromiroir fonctionne en utilisant des matériaux ou des configurations qui renvoient les ondes incidentes dans la direction de leur origine.
Quels sont les usages pratiques du rayonnement rétromiroir?
Les usages pratiques incluent la signalisation routière, la sécurité des cyclistes et les applications militaires pour améliorer la visibilité.
Pourquoi le rayonnement rétromiroir est-il important?
Il est important pour améliorer la visibilité, augmenter la sécurité et permettre le suivi des objets.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.