As-tu déjà réfléchi à la raison pour laquelle une année sur Terre compte 365 jours ? S'agit-il de 365 jours pour toutes les planètes ou seulement pour la Terre ? Nous savons que la Terre tourne autour de son axe 365,25 fois pour chaque orbite complète autour du Soleil. Dans cet article, nous allons étudier le concept de période et de vitesse orbitale, afin de comprendre pourquoi chaque planète a un nombre de jours différent dans une année.
Définition de la vitesse orbitale
Nous pouvons considérer la vitesse orbitale comme la vitesse d'un objet astronomique lorsqu'il est en orbite autour d'un autre corps céleste.
La vitesse orbitale est la vitesse nécessaire pour équilibrer la gravité du corps central et l'inertie du corps en orbite.
Disons qu'un satellite est en orbite autour de la Terre. Le satellite est soumis à un mouvement circulaire uniforme, il orbite donc à une vitesse constante \(v\), à une distance \(r\) du centre de la Terre. Comment le centre de contrôle de la mission pourrait-il faire passer le satellite d'une orbite circulaire à une distance de \(r_1\) du centre de la Terre à une orbite à une distance plus proche de \(r_2\) ? Nous discuterons de la théorie et des formules nécessaires dans la section suivante et nous déduirons les expressions de la vitesse orbitale et de l'énergie cinétique d'un satellite.
Un satellite sur une orbite circulaire a une vitesse orbitale constante. Cependant, si le satellite est lancé sans suffisamment d'énergie cinétique, il reviendra vers la Terre et n'atteindra pas l'orbite. En revanche, si le satellite reçoit trop d'énergie cinétique, il s'éloignera de la Terre avec une vitesse constante et atteindra la vitesse d'évasion.
La vitesse d'évasion est la vitesse exacte dont un objet a besoin pour se libérer du champ gravitationnel d'une planète et la quitter sans nécessiter d'accélération supplémentaire. Cette vitesse est atteinte lorsque l'énergie cinétique initiale de l'objet lancé de la Terre (sans tenir compte de la résistance de l'air) est égale à son énergie potentielle gravitationnelle, de sorte que son énergie mécanique totale est nulle,
$$\mathrm{cinétique}\\N;\mathrm{énergie}\N;-\N;\mathrm{gravitationnel}\N;\mathrm{potentiel}\N;\mathrm{énergie}\N;=\N;0.$$
Formules de vitesse orbitale
Il existe plusieurs formules et dérivations utiles associées au calcul de la vitesse orbitale d'un objet et d'autres quantités associées.
Vitesse tangentielle et accélération centripète
La vitesse tangentielle d'un satellite est ce qui l'empêche de revenir simplement sur la Terre. Lorsqu'un objet est en orbite, il est toujours en chute libre vers le corps central. Cependant, si la vitesse tangentielle de l'objet est suffisamment grande, l'objet tombera vers le corps central à la même vitesse que sa courbe. Si nous connaissons la vitesse constante \(v\) d'un satellite en orbite circulaire autour de la Terre et sa distance \(r\) par rapport à son centre, nous pouvons déterminer l'accélération centripète \(a\) du satellite, où l'accélération due à la gravité agit vers le centre de masse de la Terre,
\[a=\frac{v^2}r.\]
Nous pouvons prouver l'expression de l'accélération centripète en analysant la géométrie du système et en utilisant les principes du calcul. Si nous comparons les triangles formés par les vecteurs position et vitesse, nous constatons qu'il s'agit de triangles similaires.
Fig 1 - Triangle formé par les vecteurs position et \(\triangle{\vec{r}}\) dans une orbite circulaire. Il a deux côtés et deux angles égaux, c'est donc un triangle isocèle.
Fig 2 - Triangle formé par les vecteurs vitesse et \(\triangle{\vec{v}}\) sur une orbite circulaire. Il a deux côtés et deux angles égaux, c'est donc un triangle isocèle.
Les vecteurs position sont perpendiculaires aux vecteurs vitesse, et les vecteurs vitesse sont perpendiculaires aux vecteurs accélération, donc le triangle a deux angles égaux. La magnitude des vecteurs distance orbitale et vitesse est constante pour un objet sur une orbite circulaire, donc chacun de ces triangles a également deux côtés égaux.
Pour toute orbite circulaire, les triangles ont la même forme, mais leurs tailles sont différentes, nous pouvons donc énoncer la proportion comme suit ,
$$\begin{align}\frac{\triangle v}v=&\frac{\triangle r}r,\\triangle v=&\frac vr\triangle r.\Nend{align}\N$$.
Nous pouvons différencier l'expression pour déterminer l'accélération instantanée,
$$\frac{\triangle v}{\triangle t}=\frac vr\lim_{\triangle t\rightarrow0} \frac{\triangle r}{\triangle t}.$$
Nous pouvons ensuite prouver l'équation de l'accélération centripète en utilisant les principes du calcul,
$$\begin{align}a=&\frac vr\lim_{\triangle t\rightarrow0} \frac{\triangle r}{\triangle t},\\a=&\frac{v^2}r.\end{align}$$
Dérivation de la vitesse orbitale
La force gravitationnelle \(F_g\) est la force nette sur le satellite qui peut être exprimée comme suit,
\[F_g=\frac{GMm}{r^2},\]
où \(G\) est la constante gravitationnelle \(6.67\times10^{-11}\;\frac{\mathrm N\;\mathrm m^2}{\mathrm{kg}^2}\), \(M\) est la masse de la planète en kilogrammes \(\mathrm{kg}\), \(m\) est la masse du satellite en kilogrammes \(\mathrm{kg}\), et \(r\) est la distance entre le satellite et le centre de la Terre en mètres \(\mathrm m\).
Fig. 3 - Un satellite est en orbite autour de la Terre. La force gravitationnelle agit sur le satellite, en direction du centre de la Terre. Le satellite orbite à une vitesse constante.
Nous pouvons appliquer la deuxième loi de Newton pour trouver la formule de la vitesse orbitale.
$$\begin{align*}F_g&=ma,\\\frac{GMm}{r^2}&=\frac{mv^2}r,\\\frac{GMm}r&=mv^2.\end{align*}$$
Si nous multiplions les deux côtés de l'équation par \(1/2\), nous trouvons une expression pour l'énergie cinétique \(K\) du satellite :
$$\begin{align*}\frac12mv^2&=\frac12\frac{GMm}r,\\K&=\frac12\frac{GMm}r.\end{align*}$$
Pour trouver la formule de la vitesse orbitale, il suffit de résoudre l'équation ci-dessus pour \(v\) :
$$\begin{align*}\cancel{\frac12}\cancel mv^2&=\cancel{\frac12}\frac{GM\cancel m}r,\\v^2&=\frac{GM}r,\\v&=\sqrt{\frac{GM}r}.\end{align*}$$
Changement d'orbite et de vitesse
Si un satellite se trouve sur une orbite circulaire à une distance \(r_1\) du centre de la Terre et que le contrôle de la mission veut manœuvrer le satellite pour qu'il orbite à une distance plus proche \(r_2\) de la Terre, comment déterminerait-il la quantité d'énergie nécessaire pour le faire ? Le contrôle de la mission devrait évaluer l'énergie totale (cinétique et potentielle) du système Terre-Satellite avant et après la manœuvre orbitale et calculer la différence.
Nous savons que la seule force agissant sur le système est la force de gravité. Cette force est conservatrice, c'est-à-dire qu'elle ne dépend que de la position initiale et finale de l'objet par rapport à la distance radiale du centre de l'astre. Par conséquent, nous pouvons déterminer l'énergie potentielle gravitationnelle \(U\) de l'objet à l'aide du calcul,
\[\begin{align}U&=-\int\overset\rightharpoonup F_{g}\cdot\overset\rightharpoonup{\,\mathrm dr},\\ &=-\left(\frac{-GMm}{r^2}\;\n-widehat r\nright)\cdot\n-full(\mathrm{d} r\n;\nwidehat r\nright),\n-int_r\nfty\nfrac{GMm}{r^2}\mathrm{d}r,\n-full (\n-full), \n-full (\n-full), \n-full (\n-full) et \n-full (\n-full).GMm\;\frac{r^{-2+1}}{-1}\right|_r^\infty,\\ &=-\lim\limits_{r\to\infty}\frac{GMm}{r}- \left(-\frac{GMm}r\right),\\ &=\frac{GMm}r.\end{align}\]
La somme de l'énergie cinétique \(K\) et de l'énergie potentielle gravitationnelle \(U\) d'un objet en orbite est égale à l'énergie mécanique \(E\) et sera toujours constante. Par conséquent, en augmentant l'énergie cinétique d'un objet en orbite, son énergie potentielle gravitationnelle diminuera proportionnellement,
$$\begin{align*}E&=K\;+\;U,\\E&=\text{constant},\\W&=\triangle E.\end{align*}$$
Si la vitesse d'évasion est dépassée alors l'objet n'est plus sous l'influence gravitationnelle du corps central, alors l'énergie mécanique de l'objet sera seulement égale à son énergie cinétique.
Rappelle l'expression de l'énergie cinétique du satellite de la section précédente. Parallèlement à notre nouvelle expression de l'énergie potentielle gravitationnelle, nous pouvons déterminer l'énergie totale du système :
$$\begin{align*}E&=\frac12\frac{GmM}r-\frac{GmM}r,\\E&=-\frac12\frac{GmM}r.\end{align*}$$
Nous pouvons maintenant étudier l'énergie mécanique \(E_1\) et \(E_2\) du satellite lorsque sa distance orbitale passe de \(r_1\) à \(r_2\). Le changement de l'énergie totale \(\triangle{E}\) est donné par,
$$\begin{align*}\triangle E&=E_2-E_1,\\\triangle E&=-\frac12\frac{GmM}{r_2}+\frac12\frac{GmM}{r_1}.\end{align*}$$
Parce que \(r_2\) est une distance plus petite que \(r_1\), \(E_2\) sera plus grand que \(E_1\) et le changement d'énergie \(\triangle{E}\) sera négatif,
$$\begin{align*}\triangle E&<0.\end{align*}$$$
Puisque le travail effectué sur le système est égal au changement d'énergie, nous pouvons en déduire que le travail effectué sur le système est négatif.
$$\begin{align*}W&=\triangle E,\\W&<0,\\cdot\overset\rightharpoonup F\cdot\overset\rightharpoonup{\triangle r}&<0.\n-end{align*}$$$.
Pour que cela soit possible, une force doit agir dans la direction opposée au déplacement. Dans ce cas, la force qui provoque le déplacement serait exercée par les propulseurs du satellite. De plus, d'après la formule de la vitesse orbitale, on peut déduire que le satellite a besoin d'une vitesse plus importante pour se trouver sur une orbite plus basse. En d'autres termes, si tu veux déplacer un satellite vers une orbite plus proche de la Terre, tu dois augmenter sa vitesse. C'est logique, car lorsque l'énergie cinétique augmente, l'énergie potentielle gravitationnelle diminue, ce qui maintient l'énergie totale du système constante !
Définition de la période orbitale
La période orbitale est le temps nécessaire à un objet céleste pour effectuer une orbite complète autour du corps central.
Les planètes du système solaire ont des périodes orbitales différentes. Par exemple, Mercure a une période orbitale de 88 jours terrestres, tandis que Vénus a une période orbitale de 224 jours terrestres. Il est important de noter que nous spécifions souvent les périodes orbitales en jours terrestres (qui comptent 24 heures) par souci de cohérence, car la durée d'un jour est différente pour chaque planète respective. Même si Vénus met 224 jours terrestres pour compléter une orbite autour du Soleil, il lui faut 243 jours terrestres pour effectuer une rotation complète sur son axe. En d'autres termes, un jour sur Vénus est plus long que son année.
Pourquoi les planètes ont-elles des périodes orbitales différentes ? Si nous examinons les distances des planètes respectives par rapport au Soleil, nous constatons que Mercure est la planète la plus proche du Soleil. Elle a donc la période orbitale la plus courte de toutes les planètes. Cela est dû à la troisième loi de Kepler, qui peut également être dérivée grâce à l'équation de la période orbitale, comme nous le verrons dans la section suivante.
L'autre raison pour laquelle les planètes ont des périodes orbitales différentes est qu'il existe une relation inversement proportionnelle entre la période orbitale et la vitesse orbitale. Les planètes ayant des périodes orbitales plus grandes nécessitent des vitesses orbitales plus faibles.
Fig. 4 - De gauche à droite, dans l'ordre de leur distance au Soleil : Mercure, Vénus, Terre et Mars. NASA
Formules de calcul de la période orbitale
Puisque nous savons maintenant comment calculer la vitesse orbitale, nous pouvons facilement déterminer la période orbitale. Pour un mouvement circulaire, la relation entre la période orbitale \(T\) et la vitesse orbitale \(v\) est donnée par,
$$v=\frac{2\pi r}T.$$
Dans l'équation ci-dessus, \(2\pi r\) est la distance totale d'une révolution complète d'une orbite, comme c'est le cas pour la circonférence d'un cercle. Nous pouvons résoudre la période orbitale \(T\) en substituant l'équation de la vitesse orbitale,
$$\begin{align*}v&=\frac{2\pi r}T,\T&=\frac{2\pi r}v,\T&=\frac{2\pi r}{\sqrt{\displaystyle\frac{GM}r},\T&=2\pi r\sqrt{\frac r{GM}},\T&=\frac{2\pi r^{3/2}}{\sqrt{GM}}.\Nend{align*}}$$
Nous pouvons réarranger l'expression ci-dessus pour en déduire la troisième loi de Kepler, qui stipule que le carré de la période orbitale est proportionnel au cube du demi-grand axe (ou du rayon pour une orbite circulaire).
$$\begin{align*}T^2&=\left(\frac{2\pi r^{3/2}}{\sqrt{GM}}\right)^2,\\T^2&=\frac{4\pi^2}{GM}r^3,\\T^2&\propto r^3.\end{align*}$$
La masse du corps en orbite \(m\) n'est pas pertinente dans de nombreux scénarios. Par exemple, si nous voulons calculer la période orbitale de Mars autour du Soleil, nous ne devons prendre en compte que la masse du Soleil. La masse de Mars n'est pas pertinente dans le calcul car sa masse est insignifiante par rapport à celle du Soleil. Dans la section suivante, nous déterminerons la période orbitale et la vitesse de diverses planètes du système solaire.
Pour une orbite elliptique, on utilise le demi-grand axe \(a\) au lieu du rayon pour une orbite circulaire \(r\). Le demi-grand axe est égal à la moitié du diamètre de la partie la plus longue d'une ellipse. Sur une orbite circulaire, le satellite se déplace à une vitesse constante tout au long de l'orbite. Cependant, lorsque tu mesures la vitesse instantanée à différents endroits d'une orbite elliptique , tu t'aperçois qu'elle varie tout au long de l'orbite. Comme le définit la deuxième loi de Kepler, un objet sur une orbite elliptique se déplace plus rapidement lorsqu'il est plus proche du corps central et se déplace plus lentement lorsqu'il est plus éloigné de la planète.
La vitesse instantanée sur une orbite elliptique est donnée par la formule suivante
$$v=\sqrt{GM\gauche(\frac2r-\frac1a\droite)},$$
où \(G\) est la constante gravitationnelle \(6.67\times10^{-11}\;\frac{\mathrm N\;\mathrm m^2}{\mathrm{kg}^2}\), \(M\) est la masse du corps central en kilogrammes \(\mathrm{kg}\r}), \(r\) est la distance radiale actuelle du corps en orbite par rapport au corps central en mètres \(\left(\mathrm{m}\rright)\), et \(a\) est le demi-grand axe de l'orbite en mètres \(\left(\mathrm{m}\rright)\).
La période orbitale de Mars
Calculons la période orbitale de Mars en utilisant l'équation dérivée dans la section précédente. Nous supposons que le rayon de l'orbite de Mars autour du Soleil est approximativement de \(1,5\;\mathrm{AU}\), et qu'il s'agit d'une orbite parfaitement circulaire, et que la masse du Soleil est de \(M=1,99\fois10^{30}\;\mathrm{kg}\).
Commençons par convertir \(\mathrm{AU}\) en \(\mathrm{m}\),
\[1\;\mathrm{AU}=1.5\times10^{11}\;\mathrm m.\]
Utilise ensuite l'équation pour la période de temps et remplace les quantités pertinentes,
$$\begin{align*}T&=\frac{2\pi r^{3/2}}{\sqrt{GM}},\\T&=\frac{2\pi\;\left(\left(1.5\;\mathrm{AU}\right)\left(1.5\times10^{11}\;\mathrm m/\mathrm{AU}\right)\right)^{3/2}}{\sqrt{\left(6.67\times10^{-11}\;\frac{\mathrm m^3}{\mathrm s^2\mathrm{kg}}\right)\left(1.99\times10^{30}\;\mathrm{kg}\right)}},\\T&=5.8\times10^7\;\mathrm s.\end{align*}$$
Puisque \(1\;\text{seconde}=3.17\times10^{-8}\;\text{années}\), nous pouvons exprimer la période orbitale en années.
$$\begin{align*}T&=\left(5.8\times10^7\;\mathrm s\right)\left(\frac{3.17\times10^{-8}\;\mathrm{yr}}{1\;\mathrm s}\right),\\T&=1.8\;\mathrm{yr}.\end{align*}$$
La vitesse orbitale de Jupiter
Nous allons maintenant calculer la vitesse orbitale de Jupiter, en considérant que son rayon d'orbite autour du Soleil peut être approximé à une orbite circulaire de \(5,2\N;\Nmathrm{AU}\N).
$$\begin{align*}v&=\sqrt{\frac{GM}r},\\v&=\sqrt{\frac{\left(6.67\times10^{-11}\;\frac{\mathrm m^3}{\mathrm s^2\mathrm{kg}}\right)\left(1.99\times10^{27}\;\mathrm{kg}\right)}{\left(5.2\;\mathrm{AU}\right)\left(1.49\times10^{11}\;{\displaystyle\frac{\mathrm m}{\mathrm{AU}}}\right)},}\\v&=13\;\frac{\mathrm{km}}{\mathrm s}.\end{align*}$$
La vitesse instantanée de la Terre
Enfin, calculons la vitesse instantanée de la Terre lorsqu'elle est la plus proche et la plus éloignée du Soleil. La distance radiale entre la Terre et le Soleil est approximativement un rayon de \(1,0\;\mathrm{AU}\).
Lorsque la Terre est la plus proche du Soleil, elle est au périhélie, à une distance de \(0,983 \text{AU}\).
$$\begin{align*}v_{\text{perihelion}}&=\sqrt{\left(6.67\times10^{-11}\;\frac{\mathrm N\;\mathrm m^2}{\mathrm{kg}^2}\right)\left(1.99\times10^{30}\;\text{kg}\right)\left(\frac2{\left(0.983\;{\text{AU}}\right)\left(1.5\times10^{11}\;{\displaystyle\frac {\text{m}}{\text{AU}}}\right)}-\frac1{\left(1\;{\text{AU}}\right)\left(1.5\times10^{11}\;\frac {\text{m}}{\text{AU}}\right)}\right)},\\v_{\text{perihelion}}&=3.0\times10^4\;\frac {\text{m}}{\text{s},}\\v_{\text{perihelion}}&=30\;\frac{\text{km}}{\text{s}.}\end{align*}$$
Lorsque la Terre est la plus éloignée du Soleil, elle est à l'aphélie, à une distance de \(1,017 \text{AU}\).
$$\begin{align*}v_{\text{aphelion}}&=\sqrt{\left(6.67\times10^{-11}\;\frac{\mathrm N\;\mathrm m^2}{\mathrm{kg}^2}\right)\left(1.99\times10^{30}\;\text{kg}\right)\left(\frac2{\left(1.017\;{\text{AU}}\right)\left(1.5\times10^{11}\;{\displaystyle\frac {\text{m}}{\text{AU}}}\right)}-\frac1{\left(1\;{\text{AU}}\right)\left(1.5\times10^{11}\;\frac {\text{m}}{\text{AU}}\right)}\right)},\\v_{\text{aphelion}}&=2.9\times10^4\;\frac {\text{m}}{\text{s},}\\v_{\text{aphelion}}&=29\;\frac{\text{km}}{\text{s}}.\end{align*}$$
Période orbitale - Principaux enseignements