Les solides et les liquides ont un volume fixe. Cela nous permet de calculer facilement leurs propriétés. Les gaz, en revanche, n'ont pas de volume fixe. Ils occupent le volume du récipient dans lequel ils se trouvent. Comme si cela ne suffisait pas, le volume d'un gaz peut être affecté par des changements de température et de pression. Le scientifique français Jacques Alexandre César Charles a formulé une loi que nous connaissons aujourd'hui sous le nom de loi de Charles, qui définit la relation entre la température et le volume d'un gaz. Grâce à cette loi, Jacques Charles a conçu et lancé la toute première montgolfière au monde ! Voyons comment cette loi a repoussé les limites de l'humanité et comment elle nous a littéralement emmenés vers l'infini et au-delà.
Laloi de Charles, également appelée loi des volumes, est utilisée pour décrire l'effet d'un changement de température sur le volume d'un gaz. Elle énonce ce qui suit : À pression constante, le volume d'un gaz est proportionnel à sa température.
$$V\;\propto\;T$$$
Ou écrit sous forme d'équation :
$$V=kT$$.
Cela signifie que la quantité \(V/T\) est une valeur constante.
Cela signifie que les gaz se dilatent lorsque leur température augmente et se contractent lorsque leur température diminue. Mais pourquoi cela se produit-il ? et pourquoi cela n'affecte-t-il pas le volume des solides ou des liquides ? qu'est-ce qui fait la particularité des gaz ? Pour l'expliquer, nous devons descendre jusqu'au niveau subatomique.
Ici, la température est toujours mesurée en degrés Kelvin. Pour convertir les degrés Celcius en degrés Kelvin, nous ajoutons 273 à la température en degrés Celsius pour obtenir la température en degrés Kelvin. \(T_K\;=\;273\;+\;T_{^\circ C}\)
Pourquoi la température affecte-t-elle le volume d'un gaz ?
Nous savons déjà que les gaz n'ont pas de forme distincte ni devolume. Les molécules sont réparties et se déplacentde façon aléatoire, cette propriété leur permet de se dilater et de se comprimer lorsque la taille du récipient change. Lorsqu'un gaz est comprimé, son volume diminue (la densité augmente) car les molécules sont plus serrées. Si un gaz se dilate, son volume augmente et sa densité diminue. Le volume d'un gaz est généralement mesuré en \(\mathrm{m^3}\), \(\mathrm{cm^3}\) ou \(\mathrm{dm^3}\).Mais pourquoi est-ce important ? Nous avons parlé de la façon dont les molécules de gaz se déplacent de façon aléatoire dans le récipient dans lequel elles se trouvent. Ce mouvement donne à chacune de ces particules sa propre énergie cinétique.
En raison de leur mouvement aléatoire, les molécules de gaz se heurtent les unes aux autres et aux parois du récipient. Ces collisions sont la raison pour laquelle les gaz exercent une pression.
Lorsque latempérature du gaz augmente, l'énergiecinétique moyenne des molécules augmente. Cela augmente lavitessemoyenne de leur mouvement aléatoire. En d'autres termes, plus la température est élevée, plus la vitesse et l'énergie cinétique sont importantes.plus latempérature est élevée, plus la vitesse et l'énergie cinétique des molécules sont importantes. La loi de Charles repose sur une hypothèse importante : le gaz doit être contenu à une pression constante. Lorsque la pression est constante, l'augmentation de l'énergie cinétique des molécules entraîne la dilatation des gaz. Cela est dû à l'augmentation du taux de collision des molécules de gaz.
Effet de la température sur le volume. La loi de Charles stipule que le volume est directement proportionnel à la température d'un gaz, Florida State University
Equations de la loi de Charles
Les équations de la loi de Charles peuvent également être utilisées pour comparer le même gaz dans des conditions différentes. Comme le rapport entre le volume et le gaz est constant, nous pouvons mettre en équation le rapport entre le volume et la température d'un gaz sous différentes températures.
Pour unequantitéfixe degaz à pression constante,le rapport entrele volume et la température estconstant.
Lorsque la température diminue, la vitesse des molécules de gaz se réduit. Après un certain point, la vitesse atteint zéro, c'est-à-dire que les molécules de gaz cessent de se déplacer, cette température est appeléezéro absolu, \(-273,15\;^circ\mathrm C\). Et comme la vitesse ne peut pas diminuer en dessous de zéro, il n'y a pas de température en dessous du zéro absolu. La mécanique quantique devient une théorie plus appropriée lorsque nous voulons décrire des systèmes à des températures très basses.
Application de la loi de Charles
L'une des applications les plus célèbres de la loi de Charles est la montgolfière !
Essayons de comprendre comment la loi de Charles explique le fonctionnement d'une montgolfière.
Le fonctionnement d'une montgolfière s'explique par la loi de Charles : lorsque la température du gaz augmente, il devient moins dense, ce qui le fait monter et remplir le ballon au-dessus de lui.
Une montgolfière fonctionne en brûlant un combustible comme le propane pour chauffer l'air sous un ballon ouvert. Deux choses se produisent une fois que le propane commence à chauffer : La température du gaz sous le ballon augmente et il commence à se dilater. Lorsque le volume du gaz augmente, sa densité diminue. Il est donc plus léger et pousse le ballon vers le haut, ce qui le rend plus flottant, c'est-à-dire que l'air plus léger essaie de s'élever mais est retenu par le ballon gonflé. À une certaine température, la pression exercée par l'air léger chauffé qui pousse vers le haut sera suffisante pour vaincre le poids du ballon et de ses passagers et les soulever dans les airs.
La loi de Charles peut être utilisée comme un modèle simple pour décrire certains phénomènes météorologiques. Lorsque l'air de l'atmosphère est froid, son volume est plus faible. Cela rend l'air plus dense. C'est pourquoi il est difficile d'effectuer des activités physiques à l'extérieur pendant l'hiver. Nos poumons doivent faire plus d'efforts en respirant un air plus dense. Un autre exemple de la loi de Charles est le fait que les pneus des voitures se dégonflent en hiver et se surgonflent en été.
Exemples de la loi de Charles
Nous allons voir ici quelques exemples de la loi de Charles qui nous permettront de tester notre compréhension des équations correspondantes.
Un échantillon d'azote de 600 ml est chauffé de 10 cm à 57 cm à pression constante. Quel est le volume final ?
Le volume final du gaz après la détente est \(700;\mathrm{ml}).
Assure-toi toujours que ta réponse a un sens à la fin. par exemple, dans le cas ci-dessus, la température augmente. cela signifie que le volume final doit être plus grand que le volume initial.
Prenons un autre exemple.
Calcule le changement de température lorsque \(2\,\mathrm{l}\) à \(21\;^\circ\mathrm C\) est compressé à \(1\,\mathrm{l}\).
Apprends plus vite avec les 5 fiches sur Loi de Charles
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Loi de Charles
Qu'est-ce que la Loi de Charles en Physique?
La Loi de Charles décrit comment le volume d'un gaz augmente à mesure que sa température augmente, à pression constante.
Quelle est la formule de la Loi de Charles?
La formule de la Loi de Charles est V1/T1 = V2/T2, où V est le volume et T la température.
Pourquoi la Loi de Charles est-elle importante?
La Loi de Charles est importante car elle aide à comprendre le comportement des gaz, essentiel dans divers domaines scientifiques et industriels.
Comment démontrer la Loi de Charles?
Pour démontrer la Loi de Charles, chauffez un gaz dans un récipient scellé avec un piston mobile et observez l'expansion du gaz à mesure que la température augmente.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.