Où es-tu le plus stable ? Au sommet d'un immeuble de mille mètres de haut, ou juste au-dessus de la surface, au rez-de-chaussée ? La réponse semble logique et évidente. Lorsque tu es au rez-de-chaussée, ton énergie potentielle est faible. Les systèmes à faible énergie potentielle sont des systèmes stables. La plupart des réactions chimiques se produisent parce qu'elles sont thermodynamiquement favorables. Cela signifie que le processus passe d'un état de haute énergie à un état de basse énergie, d'un état moins stable à un état plus stable. Nous discuterons ici de la relation entre l'énergie potentielle et la stabilité, ainsi que de toutes les informations qui peuvent être révélées d'un système simplement en analysant l'énergie potentielle et les graphiques.
En traçant l'énergie potentielle en fonction de la position, nous pouvons apprendre diverses propriétés physiques d'un système. Tout d'abord, nous examinons le cas le plus simple, celui d 'un objet en chute libre. Nous savons que la variation de l'énergie potentielle \(\Delta{U}\) de ce système sera donnée par l'expression ci-dessous,
$$\Delta{U}=mg\Delta{y},$$
où \(m\) est la masse de l'objet en kilogrammes, \(\mathrm{kg}\), \(g\) est l'accélération due à la gravité en mètres par seconde au carré, \(\frac{\mathrm m}{\mathrm s^2}\), et \(\Delta{y}\) est la position ou l'altitude de l'objet en mètres, \(\mathrm{m}\).
Fig. 1 - Énergie potentielle en fonction de la position d'un objet en chute libre. La force mg est la pente, au-dessus de la pente, on a l'énergie cinétique, et en dessous, on a l'énergie potentielle. L'énergie totale du système est une ligne horizontale constante.
Nous savons que l'énergie mécanique totale d'un système isolé se conserve et est constante. Elle est représentée par une ligne horizontale sur le graphique, car nous savons que l'énergie potentielle \(U\) et l'énergie cinétique \(K\) changent de valeur de sorte que l'énergie mécanique totale \(E\) reste constante. Par exemple, regarde le point \(y_A\). L'énergie sous la ligne correspond à l' énergie potentielle, tandis que l'énergie au-dessus de la ligne est l' énergie cinétique.
Lorsque tu lances un objet et qu'il atteint sa position la plus haute, nous savons que sa vitesse sera nulle car son mouvement change de direction et il commence à tomber. Sur le graphique, nous voyons que lorsque l'objet atteint \(y_max\), l'énergie potentielle est égale à l'énergie totale du système, ce qui signifie que l'énergie cinétique à ce moment-là sera nulle. L'énergie cinétique sera toujours nulle ou positive, de sorte que l'énergie potentielle sera toujours égale ou inférieure à l'énergie totale,
Nous allons maintenant considérer le cas d'un système ressort-masse.Si nous examinons l'énergie du système, nous voyons que l'énergie potentielle ressemble à une parabole, car elle dépend du carré de la position,
$$U=\frac12kx^2,$$
où \(k\) est la constante du ressort qui détermine la rigidité du ressort en Newtons par mètre, \(\frac{\mathrm N}{\mathrm m}\), et \(x\) est le déplacement de l'objet par rapport à la position d'équilibre en mètres \(\mathrm m\).
Fig. 2 - Énergie potentielle en fonction de la position pour un système masse-ressort. La force \(kx\) est la pente, au-dessus de la pente, nous avons l'énergie cinétique, et en dessous, nous avons l'énergie potentielle. Les points d'inflexion indiquent les points où l'énergie potentielle est maximale. Cela se produit lorsque le ressort est complètement comprimé ou étiré. L'énergie totale du système est une ligne horizontale constante.
Équilibre stable et instable
Les points du graphique de l'énergie potentielle en fonction de la position où la pente est nulle sont considérés comme des points d'équilibre. Les points présentant des maxima locaux sont des points d'équilibre instable, tandis que les minima locaux indiquent des points d'équilibre stable.
Fig. 3 - Le graphique de l'énergie potentielle en fonction de la position indique les différents types de stabilité.
Une position d'équilibre pour un objet quelconque est une position dans laquelle l'objet serait naturellement au repos lorsqu'il n'y a pas de forces nettes qui s'exercent sur lui. Par exemple, la position d'équilibre d'une bille que l'on laisse rouler sur les parois d'un bol en verre est le fond du bol. Elle s'immobiliserait naturellement au fond si aucune autre force extérieure ne déplaçait la bille ou le bol. Cette position est connue sous le nom d'équilibre stable.
Un objet est enéquilibre stables'il est déplacé de sa position d'équilibre et qu'une force agit sur lui, dans la direction opposée, pour le ramener à cette position d'équilibre.L'énergie potentielle de l'objet augmente momentanément, avant de revenir à sa valeur d'équilibre.Soulevez légèrement la bille et relâchez-la, et elle reviendra à sa position d'équilibre au fond du bol.
Un objet est enéquilibre instables'il est légèrement déplacé de sa position d'équilibre et qu'une force agit sur lui, dans la même direction, l'éloignant davantage de cette position d'équilibre.L'énergie potentielle de l'objet change rapidement une fois déplacée.Imaginons que la bille repose sur le rebord du bol dans une position d'équilibre instable. On donne ensuite un léger coup de pouce à la bille, ce qui la fera rouler sur le côté du bol jusqu'au centre, ou à l'inverse, elle sera forcée de sortir du bol si elle est poussée dans l'autre direction.
Un objet est enéquilibre neutre s'il est légèrement déplacé de sa position d'équilibre et que cela n'affecte pas son équilibre. L'énergie potentielle de l'objet reste inchangée après son déplacement. Imagine que la bille a été déplacée de quelques centimètres sur une surface plane et horizontale pour en avoir un exemple.
L'énergie potentielle et la force dans les graphiques
Lorsque nous visualisons l'énergie potentielle en fonction de la position de l'objet sur un graphique,, nous constatons que la force est la valeur négative de la pente. Cela est dû à la relation entre l'énergie potentielle et le travail (rappelle-toi que le travail est égal au produit de la force et du déplacement) :
Nous pouvons également utiliser le calcul et les intégrales pour trouver l'expression de l'énergie potentielle. L'équation suivante s'applique à toutes les forces conservatrices, c'est-à-dire aux forces qui ne dépendent que de la position initiale et finale de l'objet. En d'autres termes, les forces conservatrices sont indépendantes de la trajectoire suivie par l'objet,
Si nous connaissons l'expression de l'énergie potentielle, nous pouvons déterminer la force appliquée. Nous savons que l'énergie potentielle stockée dans un ressort est \(U=\frac12kx^2\), nous pouvons donc déterminer la force qui fait osciller le système en prenant la dérivée de l'énergie potentielle par rapport à la position, ou en d'autres termes le taux de variation de l'énergie potentielle en fonction de la distance :
Cela correspond à la loi de Hooke, qui prouve expérimentalement la description du mouvement pour un système ressort-masse.
La relation entre l'énergie potentielle et la force nous en dit long sur la stabilité du système. Par définition, si l'énergie potentielle augmente, alors \(\frac{\operatorname dU}{\operatorname dx}\) est positif, ce qui signifie que la force serait négative. De même, si l'énergie potentielle diminue, la force est positive. Lorsque \(x=0\), nous voyons que la pente, la force et l'accélération sont nulles. C'est à cela que ressemble un point d'équilibre. De chaque côté des points d'équilibre stables, il y a une force qui ramène à l'équilibre. Nous voyons que les minimums locaux indiquent les endroits où l'équilibre est stable.
Fig. 4 - Représentation visuelle de la façon dont les forces reviennent à l'équilibre autour d'un point d'équilibre stable.
En revanche, si la force pointe à l'opposé du point d'équilibre, il y a un équilibre instable. Les points d'équilibre instable sont localisés dans un graphique d'énergie potentielle sous forme de maximums locaux. Dans l'image ci-dessous, nous voyons le graphique de l'énergie potentielle pour un système qui a des points d'équilibre stables et instables.
Fig. 5 - Si l'énergie potentielle augmente, la force doit être négative. Si elle diminue, la force doit être positive. Un point d'équilibre instable est un maximum. Nous constatons qu'autour des points d'équilibre instables, les forces s'éloignent du point d'équilibre. Aux points d'équilibre stables, les forces reviennent vers le point d'équilibre.
Un objet de masse \(m=4\;\mathrm{kg}\) a une fonction d'énergie potentielle,
$$U(x)=(x-2)-{(2x-3)}^3,$$
où \(x\) est le déplacement mesuré en mètres et \(U\) est l'énergie potentielle mesurée en joules. Le graphique suivant est une esquisse de la fonction d'énergie potentielle.
Fig. 6 - Énergie potentielle en fonction de la position pour trouver les points d'équilibre.
Questions
(a) Détermine les positions des points \ (\text{A}\) et \ (\text{B}\), les points d'équilibre.
(b) Si l'objet est relâché au point \ (\text{B}\) avec une petite force, peut-il atteindre le point \ (\text{A}\) ou \ (\text{C}\) ? Explique.
(c) La particule est libérée du repos au point \ (\text{C}\). Détermine sa vitesse lorsqu'elle passe au point \ (\text{A}\).
Solutions
(a) Les points \ (\text{A}\) et \ (\text{B}\) sont des points où la pente/force est nulle, ce sont donc des points d'équilibre. À ces points, le taux de variation de l'énergie potentielle en fonction de la distance sera également nul. Tout d'abord, nous prenons la dérivée de l'énergie potentielle par rapport à la position,
(b) Il est possible que si l'objet est libéré du repos au point \ (\text{B}\), il puisse atteindre le point \ (\text{A}\). Le point \ (\text{B}\) est un point d'équilibre instable, donc la force appliquée dans la bonne direction pourrait éloigner l'objet de façon à ce qu'il atteigne le point \ (\text{A}\).
Il est impossible pour l'objet d'aller jusqu'au point \N( \C}\N), car il devrait passer par le point \N (\C}{A}\N) avant d'aller jusqu'au point \N (\C}\N(\C}). Le point \ (\text{A}\) est un point d'équilibre stable et les forces de chaque côté font que l'objet revient à la position d'équilibre \ (\text{A}\), il n'atteindra donc jamais \ (\text{C}\).
De plus, au point \ (\text{B}\), le système a une énergie totale négative. Sa vitesse et donc son énergie cinétique sont nulles à ce point, ce qui signifie que l'énergie totale est égale à l'énergie potentielle. Le point \ (\text{C}\) a une énergie totale plus élevée et positive, c'est donc une autre raison pour laquelle il est impossible d'aller du point \ (\text{B}\ ) au point \ (\text{C}\ ) sans qu'un travail ne soit effectué sur l'objet.
(c) Nous trouvons d'abord les énergies potentielles aux deux points et nous utilisons la conservation de l'énergie pour trouver la vitesse de la particule au point \ (\text{A}\) :
Graphique entre l'énergie potentielle et la distance internucléaire
Les graphiques de l'énergie potentielle en fonction de la position sont utiles pour comprendre les propriétés d'une liaison chimique entre deux atomes. L'énergie d'un système composé de deux atomes dépend de la distance entre leurs noyaux. À grande distance, l'énergie est nulle, ce qui signifie que les deux atomes ne sont pas liés et sont séparés l'un de l'autre.Si les deux atomes sont très proches, il y a une force répulsive, mais à une distance d'un diamètre atomique, il y a des forces attractives qui les lient. Cela se produit parce que, à une distance d'un diamètre atomique, la force électromagnétique est surmontée par la force nucléaire forte. Le minimum local de la courbe représente la distance à laquelle les forces attractives et répulsives s' équilibrent. Cette distance entre les atomes est appelée longueur de la liaison. L'énergie à cette distance est appelée énergie de liaison.
Fig. 7 - Énergie potentielle en fonction de la distance internucléaire (picomètres ou \(10^{-12}\\Nmathrm{m}\N)) entre deux atomes. Le minimum indique l'énergie de liaison et la distance entre les atomes au point où les forces répulsives et attractives s'équilibrent.
Énergie potentielle et graphique des coordonnées de réaction
Un graphique de coordonnées de réaction montre comment l'énergie d'un système change au cours d'une réaction chimique. Au cours d'une réaction, les réactifs se transforment en produits. De l'énergie doit être ajoutée au système pour atteindre l'état de transition.
Fig. 8 - Énergie potentielle en fonction des coordonnées de la réaction. La différence entre l'énergie du réactif et le maximum est l'énergie d'activation. La différence entre l'énergie du réactif et l'énergie du produit est ce qui indique si une réaction est exothermique ou endothermique.
Cet état de transition est représenté par un maximum dans l'énergie potentielle en fonction du graphique des coordonnées de la réaction. La différence entre le maximum et l'énergie du réactif au début de la réaction s'appelle l'énergie d'activation \(E_act\). Pour qu'une réaction atteigne l'état de transition, les liaisons des réactifs doivent être étirées ou rompues. L'énergie nécessaire pour provoquer ces changements est l'énergie d'activation. La différence entre l'énergie du réactif et l'énergie du produit est \(\triangle E\). Cette différence d'énergie nous permet de savoir si la réaction est exothermique (libère de la chaleur) ou endothermique (absorbe de la chaleur). Dans le cas ci-dessus, nous constatons que l'énergie du produit est inférieure à celle du réactif, l'énergie excédentaire est donc libérée sous forme de chaleur et la réaction est exothermique.
Graphiques de l'énergie potentielle et du mouvement - Points clés à retenir
Lorsque nous visualisons l'énergie potentielle en fonction de la position de l'objet sur un graphique, nous constatons que la force est la valeur négative de la pente, \(\Delta U=-F\Delta x\).
L'énergie située sous la ligne correspond à l'énergie potentielle, tandis que l'énergie située au-dessus de la ligne est l'énergie cinétique.
L'énergie totale est représentée par une ligne horizontale sur le graphique, ce qui signifie qu'elle est constante et conservée.
La relation entre l'énergie potentielle et la force, \(F=-\frac{\operatorname dU}{\operatorname dx}\), nous en dit long sur la stabilité du système. Par définition, si l'énergie potentielle augmente, \(\frac{\operatorname dU}{\operatorname dx}\) est positif, ce qui signifie que la force est négative.De même, si l'énergie potentielle diminue, la force est positive.
À un point d'équilibre stable, de chaque côté du point d'équilibre, il y a une force qui renvoie à l'équilibre.
À un point d'équilibre instable, la force s'éloigne du point d'équilibre.
Apprends plus vite avec les 13 fiches sur Graphiques d'énergie potentielle et mouvement
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Graphiques d'énergie potentielle et mouvement
Qu'est-ce qu'un graphique d'énergie potentielle en physique ?
Un graphique d'énergie potentielle représente l'énergie potentielle d'un objet en fonction de sa position. Cela montre comment l'énergie change avec le mouvement.
Comment interpréter un graphique d'énergie potentielle ?
Pour interpréter un graphique d'énergie potentielle, observez les variations de l'énergie par rapport à la position. Les minima représentent des positions de stabilité.
Quelle est la relation entre énergie potentielle et mouvement ?
L'énergie potentielle influence le mouvement d'un objet ; un objet se déplace des positions de haute énergie potentielle vers des positions de basse énergie potentielle.
À quoi sert un graphique d'énergie potentielle en physique ?
Un graphique d'énergie potentielle aide à comprendre et prédire le comportement dynamique des systèmes physiques, comme le mouvement des particules.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.