Force de rappel

As-tu déjà vu quelqu'un sauter à l'élastique ? Ils sautent d'un pont au-dessus d'une rivière, attachés à une corde à ressort qui les fait osciller de haut en bas après qu'ils ont presque atteint la surface de la rivière. Dans ce cas, la force qui provoque les oscillations est la force du ressort causée par la tension de la corde élastique flexible. Lorsque la personne commence à se balancer d'avant en arrière, agissant comme un pendule, la force générant les oscillations est la gravité. Dans cet article, nous parlerons des forces de rappel, de quelques exemples et de leur importance, car elles sont une condition préalable au mouvement harmonique simple.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une force de rappel est une force qui agit ___ le déplacement pour essayer de ramener le système à l'équilibre.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de rappel est une fonction qui dépend du ___ d'un objet ou d'un système.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une force de rappel causée par un déplacement de la position d'équilibre lorsque le système emmagasine ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour un système ressort-masse dans une table horizontale, la seule force agissant sur la masse dans la direction du déplacement est la ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La direction de la force de rappel sera toujours ___ au déplacement de l'objet.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de rappel agissant sur le système ressort-masse dépend de ____ et de l'objet ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de rappel est la composante de la force de gravité qui est antiparallèle au déplacement du pendule.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour qu'un objet soit considéré comme un oscillateur harmonique, la force de rappel doit être inversement proportionnelle au déplacement.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour un pendule simple, lorsque l'angle de déplacement est très petit, le sinus de l'angle de déplacement peut être approximativement égal à l'angle lui-même.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La longueur d'arc est la distance entre deux points dans un ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de rappel agissant sur un système ressort-masse est ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une force de rappel est une force qui agit ___ le déplacement pour essayer de ramener le système à l'équilibre.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de rappel est une fonction qui dépend du ___ d'un objet ou d'un système.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une force de rappel causée par un déplacement de la position d'équilibre lorsque le système emmagasine ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour un système ressort-masse dans une table horizontale, la seule force agissant sur la masse dans la direction du déplacement est la ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La direction de la force de rappel sera toujours ___ au déplacement de l'objet.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de rappel agissant sur le système ressort-masse dépend de ____ et de l'objet ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de rappel est la composante de la force de gravité qui est antiparallèle au déplacement du pendule.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour qu'un objet soit considéré comme un oscillateur harmonique, la force de rappel doit être inversement proportionnelle au déplacement.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour un pendule simple, lorsque l'angle de déplacement est très petit, le sinus de l'angle de déplacement peut être approximativement égal à l'angle lui-même.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La longueur d'arc est la distance entre deux points dans un ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de rappel agissant sur un système ressort-masse est ___.

Afficer la réponse

Des millions de fiches spécialement conçues pour étudier facilement
Des millions de fiches spécialement conçues pour étudier facilement

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Force de rappel?
Ask our AI Assistant

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Force de rappel

  • Temps de lecture: 9 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Définition d'une force de rappel

    En physique, on dit qu'un objet est en équilibre si aucune force nette n'agit sur l'objet. Cela peut se produire lorsque l'ampleur et la direction des forces agissant sur l'objet sont parfaitement équilibrées ou simplement parce qu'aucune force n'agit sur l'objet. Toutes les forces n'essaient pas de rétablir l'équilibre de l'objet, mais les forces qui le font sont appelées forces de rappel.

    Uneforce de rappel est une force qui agit contre le déplacement afin d'essayer de ramener le système à l'équilibre.

    La force de rappel est une fonction qui dépend de la position d'un objet ou d'un système. Ce type de force est responsable de la génération d'oscillations et est nécessaire pour qu'un objet soit en mouvement harmonique simple. La force de rappel est ce qui provoque le changement d'accélération d'un objet en mouvement harmonique simple. Un déplacement par rapport à la position d'équilibre fait que le système emmagasine de l'énergie potentielle.

    L'équation différentielle du second ordre qui décrit le mouvement harmonique simple en une dimension découle de la deuxième loi de Newton, de sorte que \(a\), l'accélération de l'objet, et la force de rappel agissant sur l'objet en mouvement harmonique simple sont liées à \(\omega\), la fréquence angulaire, et \(x\) la position de l'objet oscillant de la manière suivante :

    $$a=-\omega^2x$$

    $$\frac{\operatorname d^2x}{\operatorname dt^2}=-\omega^2x$$.

    Exemples : Ressorts et pendules

    Lorsque tu saisis un objet attaché à un ressort, que tu le tires à une certaine distance de sa position d'équilibre et que tu le relâches, la force de rappel ramène l'objet à l'équilibre. Pour un système ressort-masse dans une table horizontale, la seule force agissant sur la masse dans la direction du déplacement est la force de rappel exercée par le ressort.

    En utilisant la deuxième loi de Newton , nous pouvons établir une équation pour le mouvement de l'objet. Il est important de noter que dans cet article, nous n'utiliserons pas la forme vectorielle de la deuxième loi car dans ce cas, nous n'étudions que l'ampleur de la force de rappel dans une seule dimension. La direction de la force de rappel sera toujours antiparallèle au déplacement de l'objet. Cela peut être prouvé expérimentalement et c'est une caractéristique de la loi de Hooke. La force de rappel agissant sur le système ressort-masse dépend de la constante du ressort et du déplacement de l'objet par rapport à la position d'équilibre.

    L'expression de la force est

    $$F_x=ma_x.$$

    En remplaçant la force du ressort par \(F_x\) et \(a_x\) pour la dérivée seconde par rapport au temps, nous obtenons

    $$-kx=m\frac{\operatorname d^2x}{\operatorname dt^2}.$$

    En réarrangeant la dérivée seconde, on obtient l'équation suivante

    $$\frac{\operatorname d^2x}{\operatorname dt^2}=-\frac kmx,$$

    où \(m\N) est la masse de l'objet à l'extrémité du ressort en kilogrammes \N((\Nmathrm{kg})\N), \N(a_x\N) est l'accélération de l'objet sur l'axe \N(\Ntext{x-axis}\N) en mètres par seconde au carré \N((\Nfrac{\Nmathrm m}{\Nmathrm s^2})\N)et \N(k\N) est la constante du ressort qui mesure la rigidité du ressort en newtons par mètre \N((\Nfrac{\Nmathrm N}{\Nmathrm m})), \(k\) est la constante du ressort qui mesure la rigidité du ressort en newtons par mètre \((\frac{\mathrm N}{\mathrm m})\), et \(x\) est le déplacement en mètres \((\mathrm m)\).

    L'expression ci-dessus ressemble beaucoup à l'équation différentielle d'un mouvement harmonique simple, de sorte que le système ressort-masse est un oscillateur harmonique, où sa fréquence angulaire peut être exprimée par l'équation suivante :

    $$\omega^2=\frac km,$$ ou explicitement comme suit .

    $$\oméga=\sqrt{\frac km}.$$

    Un ressort de \(12\;\mathrm{cm}\) a une constante de ressort de \(400\;{\textstyle\frac{\mathrm N}{\mathrm m}}\). Quelle force est nécessaire pour étirer le ressort à une longueur de \ (14\;\mathrm{cm}\)?

    Le déplacement a une magnitude de

    $$x=14\;\mathrm{cm}\;-\;12\;\mathrm{cm}=2\;\mathrm{cm}=0.02\;\mathrm m$$

    La force du ressort a une magnitude de

    $$F_s=kx=(400\;{\textstyle\frac{\mathrm N}{\mathrm m}})(0.02\;\mathrm m)=8\;\mathrm N$$$.

    Le deuxième exemple que nous allons aborder est celui d'un pendule simple. Un pendule simple est constitué d'une masse qui oscille autour d'une position d'équilibre tout en étantsuspendue à une tige ( ). La force de rappel est exercée par la gravité.

    Comme nous pouvons le voir dans l'image ci-dessus, laforce de rappel est la composante de la force de gravité qui est antiparallèle au déplacement du pendule. Cette équation est obtenue en utilisant les relations trigonométriques et la géométrie du système.

    $$sin\a gauche(\a droite)=\frac{\mathrm{opposé}}{\mathrm{hypoténuse}}=\frac{F_{antiparallèle}}{-mg}$$.

    $$F_{antiparallèle}=F_{restauration}=-mg\sin\gauche(\theta\droite)$$$.

    Où \(m\) est la masse du pendule en kilogrammes, \((\mathrm{kg})\), \(\mathrm g\) est l'accélération due à la gravité en mètres par seconde au carré, \((\frac{\mathrm m}{\mathrm s^2})\), et \(\theta\) est l'angle entre la position d'équilibre et la position de déplacement en degrés ou en radians, \((^\circ\ ;\mathrm{or}\;\mathrm{rad})\).

    Pour qu'un objet soit considéré comme un oscillateur harmonique, la force de rappel doit être proportionnelle au déplacement. Dans ce cas, elle est proportionnelle à la force de gravité et au sinus de l'angle de déplacement \N(\Ntheta\N). Cependant, dans certains cas, le mouvement d'un pendule simple est considéré comme un mouvement harmonique simple. Lorsque l'angle de déplacement est très petit, le sinus de l'angle de déplacement peut être approximativement égal à l'angle lui-même, tel que \(\sin\left(\theta\right)\approx\theta\). Dans ce cas, la force de rappel est proportionnelle au déplacement.

    Nous pouvons maintenant examiner l'équation différentielle utilisée pour décrire le mouvement d'un pendule simple pour un petit angle de déplacement. Tout d'abord,nous devons introduire le concept de longueur d'arc afin de résoudre l'équation différentielle .

    La longueur d'arc est la distance entre deux points d'une courbe.

    Encore une fois, nous commençons l'approche avec la deuxième loi de Newton, qui est donnée par.

    En substituant la force de rappel et la dérivée seconde du déplacement par rapport au temps, on obtient

    $$-mg\sin\left(\theta\right)=m\frac{\nom de l'opérateur d^2s}{dt^2},$$ où \[\sin\left(\theta\right)\approx\theta,\]

    \N- [\Nfrac{\Nnom de l'opérateur d^2s}{dt^2}=-g\Ntheta,\N] et où \N(s=L\Ntheta.\N)

    La longueur du pendule étant constante, seul l'angle de déplacement changera avec le temps. L'équation devient alors

    $$L\frac{\Nnom de l'opérateur d^2\theta}{dt^2}=-g\theta.$$

    En réarrangeant pour l'accélération, on obtient

    $$\frac{\operatorname d^2\theta}{dt^2}=-\frac gL\theta.$$

    L'expression ci-dessus ressemble beaucoup à l'équation différentielle du mouvement harmonique simple, de sorte que le pendule simple avec un petit angle de déplacement est un oscillateur harmonique, où sa fréquence angulaire s'exprime comme suit.

    $$\omega^2=\frac gL,$$

    ou explicitement comme

    $$\oméga=\sqrt{\frac gL}.$$

    Forces de rappel - Points clés à retenir

    • Uneforce de rappel est une force qui agit contre le déplacement afin d'essayer de ramener le système à l'équilibre.
    • La direction de la force de rappel sera toujours antiparallèle au déplacement de l'objet.
    • Pour un système ressort-masse dans une table horizontale, la seule force agissant sur la masse dans la direction du déplacement est la force de rappel exercée par le ressort, \(F_s=-kx\).
    • Pour qu'un objet soit considéré comme un oscillateur harmonique, la force de rappel doit être proportionnelle au déplacement.
    • Pour un pendule simple, la force de rappel est la composante de la force de gravité qui est antiparallèle au déplacement du pendule. Le pendule simple n'est un oscillateur harmonique que pour de petits angles de déplacement, \(F_p=-mg\theta\).
    Questions fréquemment posées en Force de rappel
    Qu'est-ce que la force de rappel ?
    La force de rappel est une force qui tend à ramener un objet à sa position d'équilibre.
    Quelle est la formule de la force de rappel ?
    La formule est F = -k*x, où k est la constante de raideur et x est le déplacement par rapport à l'équilibre.
    Comment fonctionne la force de rappel dans un ressort ?
    Dans un ressort, la force de rappel est proportionnelle au déplacement du ressort par rapport à sa longueur naturelle.
    Pourquoi la force de rappel est-elle négative ?
    La force de rappel est négative car elle agit dans la direction opposée du déplacement, ramenant l'objet à l'équilibre.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Une force de rappel est une force qui agit ___ le déplacement pour essayer de ramener le système à l'équilibre.

    La force de rappel est une fonction qui dépend du ___ d'un objet ou d'un système.

    Une force de rappel causée par un déplacement de la position d'équilibre lorsque le système emmagasine ___.

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Physique-chimie

    • Temps de lecture: 9 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !