Énergie interne

Nous sommes samedi et tu as des billets pour aller au stade de football pour assister au match de ton équipe préférée (tu peux changer le football pour n'importe quel sport, ne t'inquiète pas). Mais tu as lu beaucoup d'articles de StudySmarter et tu es maintenant un physicien à plein temps. Alors, une fois assis avec ta boisson et tes amuse-gueules, tu regardes ton joueur préféré et tu l'imagines simplement comme une particule. Et, lorsque tu détournes le regard, tout le terrain de football n'est plus un terrain mais un espace rempli de particules physiques. Tu veux bien sûr profiter du match, mais d'abord, une question te vient à l'esprit et tu dois y répondre. Un système de particules réelles possède-t-il une énergie cinétique totale, comme les joueurs sur le terrain ?

Énergie interne Énergie interne

Crée des supports d'apprentissage sur Énergie interne avec notre appli gratuite!

  • Accès instantané à des millions de pièces de contenu
  • Fiches de révision, notes, examens blancs et plus encore
  • Tout ce dont tu as besoin pour réussir tes examens
Inscris-toi gratuitement
Tables des matières
Table des mateères

    Rappelle-toi qu'unsystème en physique est n'importe quelle partie de l'univers que nous aimerions étudier.

    La réponse à cette question est oui. Tout comme les joueurs sur le terrain de football, les particules d'un système se déplacent. Les particules à l'intérieur de ce système ont une certaine énergie cinétique en raison de la température du système : les particules se déplacent généralement plus vite lorsque la température du système est plus élevée. En outre, les particules peuvent également avoir une énergie potentielle, par exemple, en raison de l'attraction mutuelle entre les particules (par exemple, s'il s'agit de dipôles électriques).

    Définition de l'énergie interne

    L'énergie interne d'un système est l'énergie qui se trouve à l'intérieur. C'est la somme de toutes les énergies cinétiques et potentielles microscopiques des particules du système si celui-ci était au repos et non dans un potentiel énergétique macroscopique.

    Il est important de comprendre que cette énergie interne n'a pas de relation directe avec l'énergie externe du système. Cela signifie que, si le système est en mouvement et possède de l'énergie cinétique, l'énergie interne du système ne comprend pas cette énergie qui résulte du mouvement global du système. De même, si nous plaçons l'ensemble du système à une hauteur deau-dessus du sol, cette énergie potentielle macroscopique n'affecte pas l'énergie interne du système. Un système peut être complètement immobile et n'avoir aucune énergie apparente alors que son énergie interne change, mais d'un autre côté, un système peut être en mouvement alors que son énergie interne est constante.

    Si nous chauffons de l'eau, l'énergie macroscopique du système ne semble pas augmenter puisque l'eau ne bouge pas. Cependant, nous savons qu'il se passe quelque chose parce que la température de l'eau augmente. À mesure que la température de l'eau augmente, les particules d'eau commencent à se déplacer de plus en plus vite, ce qui entraîne une augmentation de leur énergie cinétique totale. Ainsi, l'énergie interne de l'eau augmente au fur et à mesure que l'eau se réchauffe. Pendant ce temps, l'énergie cinétique externe reste nulle.

    En général, un changement dans l'énergie interne d'un système entraîne soit un changement de température, soit un changement d'état.

    L'énergie interne est une propriété extensive : une propriété d'un système qui dépend de la façon dont le système est concernant sa taille ou sa masse. Sa valeur peut être décrite comme la somme des valeurs des plus petites subdivisions du système.

    Pour les systèmes réels, on s'intéresse normalement (et on calcule donc) la variation de l'énergie interne au cours d'un processus, comme une augmentation de la température.

    L'énergie interne en thermodynamique

    En physique, l'énergie est transférée en raison des changements de température, de l'application de forces, etc. La branche qui étudie cela est thermodynamique.

    Lathermodynamique est la branche de la physique qui étudie la relation entre la chaleur, le travail, et les autres transferts d'énergie.

    Maintenant, imagine le système que tu veux (et il n'est pas nécessaire que ce soit un stade de football cette fois-ci). Rappelle-toi qu'en thermodynamique, un système est n'importe quelle partie de l'univers que nous voulons étudier, il peut donc s'agir d'un corps humain, d'une certaine quantité d'un liquide, d'une plante ou de n'importe quoi d'autre auquel tu peux penser.

    Énergie interne système thermodynamique StudySmarterFig. 1 : Un système thermodynamique avec ses limites, adapté de l'image.

    Les particules possédant des énergies microscopiques se trouvent à l'intérieur du système, et la somme de toutes ces énergies microscopiques est ce que nous appelons l'énergie interne.

    Cela nous amène à étudier ce qu'il advient de l'énergie interne lorsqu'une certaine énergie est transférée au système. Dans notre cas, nous allons nous concentrer sur ce qui se passe lorsque la température est augmentée. Pour ce faire, il faut qu'il y ait un transfert d'énergie dans le système, donc soit le système doit être chauffé, soit un travail doit être effectué sur le système.

    Lachaleur est l'énergie transférée à un système ou à partir d'un système par le biais d'une différence de température avec l'environnement.

    La chaleur ajoutée ou soustraite à un système ne doit pas être confondue avec la température d'un système.

    Le transfert de chaleur entraîne une modification de l'énergie interne d'un système. De même, l'application d'un travail au système augmente l'énergie interne du système.

    Énergie interne Transfert de chaleur StudySmarterFig. 2 : Transfert de chaleur entre deux systèmes à des températures différentes.

    Un changement dans l'énergie interne d'un système peut soit modifier l'énergie potentielle des particules, soit l'énergie cinétique des particules. Si l'énergie potentielle est modifiée, on parle de changement d'état. Si l'énergie cinétique est modifiée, on parle de changement de température.

    La température d'un système est une mesure de l'énergie cinétique totale du système. Lorsque de la chaleur circule dans un système et qu'aucun changement d'état ne se produit, l'énergie interne augmente et donc l'énergie cinétique totale augmente également. Cela signifie que la température augmente.

    Changements dans l'énergie interne

    Comme nous l'avons déjà dit, un changement dans l'énergie interne d'un système entraîne soit un changement de température, soit un changement d'état. Nous examinerons les changements de température dans la section suivante et nous nous concentrerons ici sur les changements d'état.

    Comme tu le sais peut-être, nous distinguons normalement trois états de la matière : gaz, liquideet solide. Si la température d'un système augmente ou diminue jusqu'à un certain point, qui dépend de la substance avec laquelle nous travaillons, il peut y avoir un changement d'état. Pendant ce changement d'état, la température reste constante, mais il y a tout de même un changement dans l'énergie interne du système.

    Premièrement, l'énergie interne du système peut augmenter, suiteà l'application d'une certaine chaleur ou d'un certain travail . Voici les trois différents changements d'état concernant les augmentations de l'énergie interne :

    • Un solide fond et devient un liquide.
    • Un liquide s'évapore et se transforme en gaz.
    • Si nous avons un solide et qu'il se transforme directement en gaz lors de l'augmentation de l'énergie interne, nous parlons de sublimation.

    Sinon, nous pouvons diminuer l 'énergie interne d'une substance lorsque le système commence à céder de la chaleur à l'extérieur ou à effectuer un travail sur son environnement :

    • Un gaz se condense et devient un liquide.
    • Un liquide gèlera, le transformant en solide.
    • Si la substance passe du gaz au solide sans passer par son état liquide, on parle de dépôt.

    Énergie interne Changements dans l'énergie interne StudySmarterFig. 3. En augmentant et en diminuant la température, nous pouvons changer l'état de la matière.

    Tu peux en apprendre davantage sur les changements d'état ici dans StudySmarter.

    Équation du changement d'énergie interne

    Dans la plupart des cas, un changement d'énergie interne provoque un changement de température. Dans ce cas, seule l'énergie cinétique totale des particules varie, tandis que l'énergie potentielle totale reste la même.

    L' énergie thermique d'un système est la somme de toutes les énergies cinétiques microscopiques des particules du système si celui-ci était au repos.

    En bref, l'énergie thermique peut être considérée comme la partie cinétique de l'énergie interne. Lorsqu'il n'y a pas de changement d'état au cours d'un processus, le changement de l'énergie interne est le même que le changement de l'énergie thermique du système.

    L'équation reliant le changement d'énergie thermique et le changement de température d'un système est la suivante

    \[\text{changement d'énergie thermique}=\text{masse}\cdot \text{capacité thermique spécifique}\cdot \text{changement de température}\].

    En symboles, cette équation devient

    \[\Delta E=mc\Delta \theta\]

    • \(\Delta E\)est le changement d'énergie thermique d'un système. L'unité standard est le joule (\mathrm{J}\).
    • \(m\) est la masse du système. L'unité standard est le kilogramme (\(\mathrm{kg}\)}.
    • \(c\) est la capacité thermique spécifique. Elle est définie comme la quantité d'énergie nécessaire pour augmenter la température d'une unité de masse d'une certaine substance d'une unité de température. Chaque substance a une capacité thermique spécifique constante : c'est une caractéristique, tout comme la densité et la couleur. L'unité standard est lejoule/(kilogramme x kelvin), (\(\mathrm{J}/(\mathrm{kg \cdot K})\)). Il est toujours positif.
    • \(\Delta \theta\) est le changement de température du système. Si la température finale est inférieure à la température initiale, la valeur sera négative. L'unité standard est le kelvin, (\(K\)).

    Comme tu peux le constater, si la masse d'une substance ne change pas au cours d'un processus (elle a donc une valeur constante), la température du système augmentera si nous augmentons son énergie thermique. Compte tenu d'un certain apport d'énergie, le changement de température dépend de la masse du système et de la capacité thermique spécifique du matériau dont le système est constitué. Pour deux systèmes avec deux substances différentes ayant la même masse et modifiant de manière égale l'énergie thermique des deux systèmes, la variation de la température sera différente. Cela s'explique par le fait que les deux substances auront des valeurs différentes pour leur capacité thermique spécifique.

    L'énergie interne d'un système peut également être modifiée par le travail.

    En thermodynamique, on parle normalement d'expansion et de compression. Lorsque le volume d'un système augmente, on parle d'expansion et lorsqu'il diminue, on parle de compression.

    Travail sur l'énergie interne StudySmarterFig. 4 : Exemples de a) dilatation et b) compression d'un système.

    Le fait d'effectuer un travail sur un système permet de le comprimer. La quantité de travail nécessaire pour comprimer un système d'un certain volume est dictée par la pression du système selon la formule suivante :

    \[W=-p\Delta V,\]

    • \(W\) est le travail effectué sur le système.
    • \(p\) est la pression du système. L'unité standard de pression est lepascal (\(\mathrm{Pa}\)).
    • \(\Delta V\) est la différence de volume du système causée par le travail effectué. Cette différence est négative si le système est comprimé. L'unité standard est lemètre cube (\(\mathrm{m}^3\)).

    Si nous effectuons un travail sur le système, nous voyons d'après la formule que la différence de volume est négative, nous avons donc bien une compression. De même, si le système effectue un travail sur son environnement, il se dilate.

    Exemples d'énergie interne

    Maintenant que nous comprenons ce que sont l'énergie thermique et l'énergie interne, faisons quelques calculs reliant les changements d'énergie thermique aux changements de température. S'il n'y a pas de changement d'état, le changement d'énergie thermique est égal au changement d'énergie interne.

    Question

    Imagine que tu disposes d'une masse d'eau de \(m=2\,\,\mathrm{kg}\). Si la température de cette masse d'eau passe de \(20^{\circ}\NC à \N (60^{\circ}\NC), quelle quantité d'énergie thermique a été ajoutée à l'eau ? La capacité thermique spécifique de l'eau est de \(4182\,\,\mathrm{J/kg\cdot K}\).

    Solution

    Il suffit d'appliquer l'équation de la variation de l'énergie thermique :

    \N- [\NDelta E=mc\NDelta \Ntheta\N].

    Nous remarquons que la différence de température est de \(40\,\\Nmathrm{K}\N)\N(40\N,\Nmathrm{K}\N). Si nous remplaçons les valeurs données dans l'équation, nous obtenons le résultat suivant :

    \[\NDelta E=2\N,\N,\Nmathrm{kg}\Ncdot 4182\N,\N,\Nmathrm{\Nfrac{J}{kg\Ncdot K}}\Ncdot 40\N,\N,\Nmathrm{K}=3,3\Ncdot 10^5 \N,\N,\Nmathrm{J}\N].

    Nous concluons que \(3,3\cdot 10^5\,\cMathrm{J}\) d'énergie thermique a été ajoutée à l'eau pour que sa température soit augmentée comme indiqué dans la question. Nous ne savons pas comment cette énergie a été ajoutée ! Cela a pu se faire par transfert de chaleur ou par travail.

    Question

    Imagine que nous ayons \N(m=0,5\N,\Nmathrm{kg}\N) d'une substance et que nous voulions savoir de quel matériau il s'agit. Nous décidons de mesurer sa capacité thermique spécifique et de rechercher ensuite quel matériau possède cette capacité thermique spécifique. Nous chauffons le matériau, ce qui augmente l'énergie interne de \(2500,\,\mathrm{J}\). De même, nous ne constatons aucun changement d'état et nous mesurons un changement de température de \(10^{\circ}\) C. Quelle est la capacité thermique spécifique de ce matériau ? De quel matériau s'agit-il ?

    Solution

    Il n'y a pas eu de changement d'état, donc le changement d'énergie interne est le changement d'énergie thermique. Une fois de plus, nous devons utiliser l'équation de la variation de l'énergie thermique, mais cette fois, nous devons isoler la capacité thermique spécifique, comme suit :

    \[\Delta E=mc \Delta \theta \ \Drightarrow \ c=\dfrac{\Delta E}{m \Delta \theta}\].

    Maintenant, nous pouvons substituer les valeurs dans l'équation :

    \[c=\dfrac{2250\,\,\mathrm{J}}{0,5\,\,\mathrm{kg}\cdot 10\,\,\mathrm{K}}=450\,\,\mathrm{\frac{J}{kg \cdot K}}\]

    La capacité thermique spécifique est \(c=450,\Nmathrm{J/kg \cdot K}\N). Si nous consultons un tableau des capacités thermiques spécifiques, nous constaterons que le fer a cette capacité thermique spécifique, nous avons donc très probablement du fer.

    Énergie interne - Points clés

    • Lathermodynamique est la branche de la physique qui étudie la relation entre la chaleur, le travail, et les autres transferts d'énergie.
    • Un système thermodynamique est une partie limitée de l'univers.
    • L'énergie interne d'un système est la somme de toutes les énergies cinétiques et potentielles microscopiques des particules du système.
    • L'augmentation de l'énergie interne d'un système entraîne soit une augmentation de la température, soit un changement d'état.
    • L'énergie thermique d'un système est la somme de toutes les énergies cinétiques microscopiques des particules du système.
    • En augmentant l'énergie thermique d'un système, les particules du système se déplacent plus rapidement (car leur énergie cinétique augmente), ce qui entraîne une augmentation de la température.
    • Le changement de température d'un système résultant d'un changement d'énergie thermique peut être calculé à l'aide de la formule suivante : \(\Delta E=mc \Delta \theta\).
    • La capacité thermique spécifique d'une substance estdéfinie comme la quantité d'énergie nécessaire pour augmenter la température d'une unité de masse de la substance d'une unité de température.

    Références

    1. Fig. 2- Flux de chaleur (https://commons.wikimedia.org/wiki/File:Heat_flow_hot_to_cold.png) par BlyumJ sous licence CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
    2. Fig. 3- États de la matière (https://commons.wikimedia.org/wiki/File:States-of-matter-template.svg) par Enoshd sous licence CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
    3. Fig. 4- Dilatation thermique d'un volume (https://commons.wikimedia.org/wiki/File:Thermal-expansion-volume.svg) par MikeRun est sous licence CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
    Questions fréquemment posées en Énergie interne
    Qu'est-ce que l'énergie interne ?
    L'énergie interne est la somme des énergies cinétiques et potentielles des particules qui composent un système.
    Comment calculer l'énergie interne ?
    Pour calculer l'énergie interne, on utilise la formule U = Q - W, où Q est la chaleur ajoutée et W le travail effectué par le système.
    Quelle est la relation entre énergie interne et température ?
    L'énergie interne d'un gaz parfait est proportionnelle à sa température, car l'augmentation de la température accroît l'énergie cinétique des particules.
    Comment l'énergie interne change-t-elle lors d'une transformation adiabatique ?
    Lors d'une transformation adiabatique, l'énergie interne change car il n'y a pas d'échange de chaleur (Q = 0), donc toute variation d'énergie interne résulte du travail effectué par le système.

    Teste tes connaissances avec des questions à choix multiples

    La température et l'énergie interne du système ne changent pas lors d'un changement d'état. Vrai ou faux ?

    L'énergie interne d'un système est la somme de toutes les énergies microscopiques des particules qui s'y trouvent.

    Si nous avons deux systèmes différents composés de deux substances différentes ayant la même masse, y a-t-il un changement de température égal si nous changeons l'énergie thermique de la même quantité dans les deux systèmes ?

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Physique-chimie

    • Temps de lecture: 15 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    Obtiens un accès illimité avec un compte StudySmarter gratuit.

    • Accès instantané à des millions de pièces de contenu.
    • Fiches de révision, notes, examens blancs, IA et plus encore.
    • Tout ce dont tu as besoin pour réussir tes examens.
    Second Popup Banner