Énergie cinétique et Vitesse dans les systèmes MHS
Dans la plupart des cas, il est presque intuitif que l'énergie cinétique et la vitesse soient liées. Par exemple, une voiture arrive sur toi à \N(\N;5\N;\Nmathrm{mph}\N) tandis qu'une autre arrive à \N (\N;100\N;\Nmathrm{mph}\N)et il est évident que c'est celle qui a le plus d'énergie cinétique. Il est évident que l'une des voitures transporte plus d'énergie cinétique. Dans un exemple moins intuitif, nous considérons que les molécules de l'air se déplacent et oscillent. Lorsque nous sentons de l'air chaud, cela signifie que ces molécules se déplacent rapidement et qu'elles ont donc une énergie cinétique élevée. Lorsque l'air est froid, cela signifie que ces molécules ne se déplacent pas aussi rapidement, elles ont donc une faible énergie cinétique. Dans les systèmes de mouvement harmonique simples, la rigidité de l'objet exerçant la force de rappel sur l'objet oscillant affecte l'énergie cinétique du système. Dans cet article, nous allons comprendre comment l'énergie cinétique se comporte dans un système qui se déplace en mouvement harmonique simple.
L'énergie cinétique d'un oscillateur est associée à l'énergie nécessaire à son mouvement. L'unité d'énergie cinétique est le joule ((\mathrm J)\) ou le newton-mètre ((\mathrm N\;\mathrm m)\). Il est important de noter que l'énergie cinétique est une quantité scalaire et non une quantité vectorielle, ce qui signifie qu'elle a une magnitude, mais qu'elle ne dépend pas d'une direction donnée. La vitesse est un vecteur, mais la magnitude de la vitesse est une quantité scalaire. Pour trouver l'expression de l'énergie cinétique d'un oscillateur, nous devons d'abord trouver la vitesse d'un oscillateur. Nous savons que l'énergie cinétique d'une particule est liée à sa masse et au carré de sa vitesse, et qu'elle est donnée par la formule suivante
$$K=\frac12mv^2.$$
Dans un article précédent, nous avons dérivé l'expression de l'énergie potentielle d'un oscillateur :
$$U=\frac12\omega^2mx^2,$$
où \(\omega\) est la fréquence angulaire de l'objet en radians par seconde \((\frac{\mathrm{rad}}{\mathrm s})\).
Nous avons également indiqué que l'énergie est conservée dans un mouvement harmonique simple. Cela signifie qu'à deux moments quelconques d'un cycle d'oscillation, la somme des énergies cinétique et potentielle doit être égale :
Initialement, nous sommes au déplacement maximum, donc, \N(v_i=0,\N;x_i=A,v_f=v,\N;et\N;x_f=x\N). Nous remplaçons les valeurs dans l'équation ci-dessus et résolvons la vitesse :
Maintenant que nous connaissons l'expression de la vitesse de l'objet soumis à un mouvement harmonique simple, nous pouvons déterminer l'équation de l'énergie cinétique des oscillateurs harmoniques simples :
Comme nous pouvons le voir dans l'équation ci-dessus, de nombreux paramètres dans un système entreprenant un mouvement harmonique simple peuvent affecter l'énergie cinétique. L'énergie cinétique est liée à la masse de l'objet oscillant, à sa fréquence angulaire, à son amplitude et à sa position par rapport au point d'équilibre à tout moment. La façon la plus simple de le prouver expérimentalement est de mettre en place un système masse-ressort.
Une autre façon d'exprimer l'énergie cinétique d'un oscillateur consiste à utiliser la définition de la position d'un objet dans un système de mouvement harmonique simple,
$$x=A\cos\à gauche(\omega t+\phi\à droite).$$
Nous remplaçons l'équation ci-dessus par notre expression de l'énergie cinétique,
Où nous utilisons l'identité trigonométrique \ (\cos^2\left(\theta\right)+\sin^2\left(\theta\right)=1\). Nous avons donc maintenant une expression pour l'énergie cinétique qui consiste en une fonction sinusoïdale élevée au carré. Remarque que la mise au carré de la fonction sinusoïdale signifie que l'énergie cinétique prendra toujours des valeurs positives, comme nous le prévoyons, même lorsque la fonction sinusoïdale elle-même est négative. L'énergie cinétique d'un système soumis à un mouvement harmonique simple est donnée par ,
Dans un système ressort-masse, lorsque le ressort se décompresse, il effectue un travail sur l'objet afin de le déplacer. Ce travail est égal à l'énergie potentielle stockée dans le ressort, et pendant ce moment, l'énergie potentielle est convertie en énergie cinétique, de sorte que l'objet peut se déplacer.
Ils s'interchangent toujours, de sorte que l'énergie totale du système est toujours constante. Nous verrons l'énergie cinétique maximale lorsque l'énergie potentielle est au minimum et vice versa.
Dans le cas d'un système masse-ressort, nous savons que l'expression de la fréquence angulaire est donnée par
$$\oméga=\sqrt{\frac km},$$
où \(k\)est la constante du ressort qui mesure la rigidité du ressort en newtons par mètre \ ((\frac{\mathrm N}{\mathrm m})\).
Nous pouvons maintenant exprimer l'équation de l'énergie cinétique d'un ressort. Plus le ressort est rigide, plus l'énergie cinétique du système est élevée. Nous le remarquerons en remplaçant la valeur de \(\Noméga^2\N) pour un ressort par l'expression de l'énergie cinétique,
Considère deux systèmes, qui ont tous deux la même amplitude et le même déplacement par rapport à la position d'équilibre. Quel système aura une plus grande énergie cinétique ?
Le système ayant la plus grande constante de ressort aura une plus grande énergie cinétique, car la plus grande constante de ressort signifie que ce ressort sera plus rigide.
Énergie cinétique minimale et maximale d'un ressort
Il y a trois moments dans un cycle d'oscillation où l'énergie cinétique sera à son minimum. Cela se produit lorsque le déplacement de l'objet est maximal. À ces moments, la vitesse de l'objet est nulle, car il change de direction. De plus, pendant ces moments, le déplacement est égal à l'amplitude. Ces moments correspondent à \N(t=0,\Nfrac{\N;T}{2,\N;T}\N) :
En revanche, l'énergie cinétique sera maximale pendant deux moments d'un cycle d'oscillation. Ces moments se produisent lorsque l'objet passe par la position d'équilibre. Ces moments correspondent à \(t=\frac T4,\;\frac{3T}4\):
Considère un système masse-ressort. Nous déplaçons la masse de sa position d'équilibre à deux distances différentes. La première fois, l'amplitude des oscillations est de 3,0, tandis que la deuxième fois, l'amplitude des oscillations est de 6,0. Fais une comparaison de la période, de la fréquence et de la vitesse maximale du système pour ces deux cas.
Pour un oscillateur harmonique simple, la période et la fréquence sont indépendantes de l'amplitude. Cependant, la vitesse maximale du bloc sera plus grande dans le deuxième cas que dans le premier. Nous savons que la vitesse maximale est proportionnelle à l'amplitude, de sorte que \(v_\max=A\sqrt{\frac km}\) est deux fois plus grande dans le second cas que dans le premier.
Énergie cinétique et vitesse dans les systèmes SHM - Principaux points à retenir
L'énergie cinétique est associée àl'énergie nécessaire pour accélérer un objet depuis le repos jusqu'à une vitesse donnée.
L'unité de l'énergie cinétique est le joule((\mathrm J)\) ou le newton mètre ((\mathrm N\;\mathrm m)\).
Il est important de noter que l'énergie cinétique est une quantité scalaire et non une quantité vectorielle, ce qui signifie qu'elle a une magnitude, mais qu'elle ne dépend pas de la direction. La vitesse est un vecteur, mais lecarré de la vitesse est une quantité scalaire.
L'énergie cinétique estliée à la masse de l'objet oscillant, à sa fréquence angulaire, à son amplitude et à sa position par rapport au point d'équilibre à tout moment,\(K=\frac12m\omega^2(A^2-x^2)\).
Une autre expression de l'énergie cinétique d'un oscillateur est celle qui se comporte comme une fonction sinusoïdale au carré, \(K=\frac12m\omega^2A^2\sin^2\gauche(\omega t+\phi\droite)\).
Dans un système de mouvement harmonique simple,, il n'y a pas de moment où les énergies cinétique et potentielle sont égales.
Plus le ressort est rigide, plus l'énergie cinétique du système est élevée, \(K=\frac12k(A^2-x^2)\).
L'énergie cinétique minimale se produit lorsque la vitesse de l'objet est nulle, alors qu'ilchange la direction de son mouvement . À ce moment-là, le déplacement maximal est égal à l'amplitude, \(v_\min=\sqrt{\frac km}\sqrt{A^2-A^2}=0\).
L'énergie cinétique maximale se produit lorsque l'objet passe par la position d'équilibre, \(K_\max=\frac12k(A^2-{(0)}^2)=\frac12kA\).
Apprends plus vite avec les 15 fiches sur Énergie cinétique et Vitesse dans les systèmes MHS
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Énergie cinétique et Vitesse dans les systèmes MHS
Qu'est-ce que l'énergie cinétique dans un système MHS?
L'énergie cinétique dans un système Masse-Ressort (MHS) est l'énergie que possède le système dû à son mouvement. Elle dépend de la masse de l'objet et de la vitesse de son déplacement.
Comment la vitesse affecte-t-elle l'énergie cinétique dans un système MHS?
La vitesse affecte directement l'énergie cinétique. Plus la vitesse est élevée, plus l'énergie cinétique est grande, car elle est proportionnelle au carré de la vitesse.
Quelle est la formule de l'énergie cinétique pour un système MHS?
La formule de l'énergie cinétique (E_k) dans un système MHS est E_k = 1/2 mv², où m est la masse et v est la vitesse.
Comment mesurer la vitesse dans un système MHS?
La vitesse dans un système MHS peut être mesurée en chronométrant le déplacement de l'objet sur une certaine distance et en utilisant la relation v = d/t.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.