Condensateurs en série et parallèle

Tu connais peut-être déjà le terme "condensateur". C'est un dispositif électrique qui peut être connecté dans un circuit afin de stocker de l'énergie dans un champ électrique, de filtrer le courant alternatif, et bien d'autres caractéristiques. Les condensateurs sont surtout connus pour leur capacité à stocker la charge électrique. La charge électrique s'accumule dans un condensateur pendant le passage d'un courant électrique, lorsque ce courant s'arrête, le condensateur décharge alors cette charge électrique dans le circuit pour maintenir le passage du courant électrique pendant un certain temps. Cette caractéristique du condensateur peut être utilisée pour convertir le courant continu en courant alternatif.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation de la capacité totale pour des condensateurs en parallèle ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation de la capacité totale pour des condensateurs en série ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quel est le symbole du circuit d'un condensateur à plaques parallèles ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque des condensateurs sont connectés en parallèle, la capacité totale est toujours plus grande que n'importe lequel des condensateurs individuels.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque des condensateurs sont connectés en série, la capacité totale est toujours plus grande que n'importe lequel des condensateurs individuels.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation du condensateur ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque les condensateurs sont connectés en parallèle, ils ont tous la même tension.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque les condensateurs sont connectés en série, ils subissent tous le même courant.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque les condensateurs sont connectés en série, ils subissent tous des magnitudes de charge différentes à travers les plaques parallèles

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation de l'énergie stockée dans un condensateur ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation de l'énergie stockée dans un condensateur ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation de la capacité totale pour des condensateurs en parallèle ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation de la capacité totale pour des condensateurs en série ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quel est le symbole du circuit d'un condensateur à plaques parallèles ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque des condensateurs sont connectés en parallèle, la capacité totale est toujours plus grande que n'importe lequel des condensateurs individuels.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque des condensateurs sont connectés en série, la capacité totale est toujours plus grande que n'importe lequel des condensateurs individuels.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation du condensateur ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque les condensateurs sont connectés en parallèle, ils ont tous la même tension.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque les condensateurs sont connectés en série, ils subissent tous le même courant.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque les condensateurs sont connectés en série, ils subissent tous des magnitudes de charge différentes à travers les plaques parallèles

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation de l'énergie stockée dans un condensateur ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation de l'énergie stockée dans un condensateur ?

Afficer la réponse

Des millions de fiches spécialement conçues pour étudier facilement
Des millions de fiches spécialement conçues pour étudier facilement

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Condensateurs en série et parallèle?
Ask our AI Assistant

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Condensateurs en série et parallèle

  • Temps de lecture: 12 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Condensateurs en série et condensateurs en parallèle StudySmarterFig. 1 - La figure montre que les condensateurs qui sont utilisés pour se connecter dans un circuit électrique sont placés sur une surface verte.

    La fonction de ces condensateurs peut être ajustée et améliorée en les connectant selon des arrangements spécifiques. Nous pouvons augmenter la capacité nette du circuit en connectant les condensateurs en parallèle à la batterie. De même, nous pouvons stocker la même quantité de charge dans tous les condensateurs en les connectant en série. Dans cet article, nous allons découvrir en détail les combinaisons de condensateurs en série et en parallèle et leurs avantages dans les circuits électriques.

    Formule des condensateurs en série et en parallèle

    Voyons d'abord la formule des condensateurs en parallèle, nous comprendrons plus tard pourquoi nous choisissons d'abord le parallèle.

    Condensateurs en parallèle

    Dans la figure ci-dessous, nous voyons deux condensateurs à plaques parallèles connectés en parallèle.

    Condensateurs en série et en parallèle Condensateurs en parallèle StudySmarterFig. 2 - Condensateurs à plaques parallèles orientés parallèlement, reliés par deux fils.

    Dans un circuit parallèle, le courant est fourni à deux composants indépendamment l'un de l'autre grâce à l'utilisation d'une jonction. Pour calculer la capacité totale de ce montage, nous pouvons utiliser l'équation suivante

    \[ C_{\text{p}} = \sum_{\text{i}} C_{\text{i}} ,\]

    où \(C_{text{p}}\) est la capacité parallèle totale mesurée en farads \(\mathrm{F}\), \(C_{text{i}}\) est la capacité individuelle des condensateurs également mesurée en farads \(\mathrm{F}\), et le signe de somme \(\sum_{text{i}}\) indique que nous additionnons les capacités individuelles. Cette équation nous permet de voir les similitudes entre l'équation de la capacité parallèle et l'équation de la résistance en série. Une chose importante à noter à propos de cette équation est que la capacité d'un groupe de condensateurs en parallèle sera toujours plus grande que n'importe lequel des condensateurs impliqués, même celui qui a la plus grande capacité.

    Condensateurs en série

    Présentons maintenant la règle de la capacité en série. Nous verrons qu'elle a la même forme que celle de la résistance totale d'un ensemble de résistances connectées en parallèle. Dans la figure ci-dessous, nous voyons les deux mêmes condensateurs \(C_1\) et \(C_2,\) maintenant connectés en série.

    Condensateurs en série et en parallèle Condensateurs en série StudySmarterFig.3 - Les condensateurs sont placés en série, reliés par un seul fil.

    Dans ce cas, les éléments sont connectés l'un après l'autre, et il n'y a pas de jonction. L'équation des condensateurs en série est la suivante

    \[ \frac{1}{C_{\text{s}}} = \sum_{\text{i}} \frac{1}{C_{\text{i}} ,\]

    où \(C_{\text{s}}\) est la capacité en série mesurée en farads \(\mathrm{F}\), \(C_{\text{i}}\) est la capacité individuelle mesurée en \(\mathrm{F}\), et \(\sum_{\text{i}}\) représente la somme de toutes les capacités. Comme nous pouvons le voir, cette équation est similaire à celle des condensateurs parallèles, sauf que nous additionnons les réciproques des capacités individuelles pour obtenir l'inverse de la capacité totale. La capacité d'un groupe de condensateurs en série est toujours inférieure à la capacité de n'importe lequel des condensateurs concernés, même celui dont la capacité est la plus faible.

    Dérivation des condensateurs en série et en parallèle

    Voyons tout d'abord la dérivation des condensateurs en parallèle.

    Dérivation des condensateurs en parallèle

    En utilisant l'équation du condensateur, nous constatons que le premier condensateur obéit à l'équation suivante

    \[ C_1 = \frac{Q_1}{V_1} ,\]

    où \(C_1\) est la capacité du premier condensateur, \(Q_1\) est l'ampleur de la charge sur les plaques du premier condensateur, et \(V_1\) est la tension aux bornes du premier condensateur. De même, avec le second condensateur, nous trouvons

    \[ C_2 = \frac{Q_2}{V_2} ,\]

    où \(C_2\) est la deuxième capacité, \(Q_2\) est l'ampleur de la charge sur les plaques du deuxième condensateur, et \(V_2\) est la tension aux bornes du deuxième condensateur.

    Lorsque nous avons des composants électriques en parallèle les uns avec les autres, nous savons que la tension à travers eux est égale et équivalente à la tension totale à travers la section parallèle. On peut donc écrire que

    \[ V_1 = V_2 = V_{\text{T}} .\]

    De plus, nous pouvons réécrire la tension totale à travers la section parallèle comme suit

    \[ V_{\text{T}} = \frac{Q_{\text{T}}{C_{\text{T}} .\]

    La charge totale \(Q_{\text{T}}\) est donnée par l'addition des charges à travers les deux condensateurs à plaques parallèles, ceci parce que le courant à travers deux jambes d'un circuit parallèle est partagé. Nous constatons donc que

    \[ \begin{align} Q_\text{T} &= Q_1 + Q_2 \\N- C_\text{T}} V_{text{T}} &= \left(C_1 V_1 \right) + \left( C_2 V_2 \right) \\C{text{T}} &= \frac{1}{V_{text{T}}} ( \left(C_1 V_{text{T}} \right) + \left( C_2 V_{text{T}} \right)) \\N- C_{{text{T}} &= \frac{\bcancel{V_{\text{T}}}}{\bcancel{V_{\text{T}}}} (C_1 + C_2) \N- C_{\text{T}} &= C_1 + C_2, \Nend{align} \]

    ce qui nous donne notre équation pour les condensateurs en parallèle.

    Dérivation des condensateurs en série

    Comme pour les condensateurs en parallèle, appliquons l'équation du condensateur aux deux condensateurs en série. Le résultat est le suivant

    \[ C_1 = \frac{Q_1}{V_1} ,\]

    et

    \[ C_2 = \frac{Q_2}{V_2} .\]

    Lorsque des composants électriques sont en série les uns avec les autres, leur tension totale est partagée tandis que le courant à travers les deux composants est égal. Puisque le courant est égal, cela signifie également que la charge sur les deux plaques des condensateurs sera égale, ce qui nous permet d'écrire

    \[ Q_1 = Q_2 = Q_{\text{T}} .\]

    Nous pouvons alors également écrire que la tension totale aux bornes de la combinaison de condensateurs est la suivante

    \[ V_{\text{T}} = V_1 + V_2 .\]

    En réarrangeant les équations de nos condensateurs individuels et en les substituant à l'équation de la tension totale, nous obtenons la formule suivante

    \[ \begin{align}V_{\text{T}} &= V_1+V_2\\ V_{\text{T}} &= \frac{Q_1}{C_1} + \frac{Q_2}{C_2} \N- V_{{text{T}} &= \frac{Q_{text{T}}}{C_1} + \frac{Q_{{text{T}}}{C_2} \\ \frac{V_{\text{T}}}{Q_{\text{T}}} &= \frac{1}{C_1} + \frac{1}{C_2} \\ \frac{1}{C_{\text{T}}} &= \frac{1}{C_1} + \frac{1}{C_2} , \end{align} \]

    ce qui nous donne l'équation du condensateur en série.

    Condensateur en série et en parallèle

    Maintenant que nous avons établi les règles des condensateurs dans les orientations série et parallèle, envisageons de combiner les deux cas et de déterminer comment calculer la capacité totale. En nous référant au diagramme ci-dessous, nous pouvons voir que le condensateur \(C_1\) est connecté en série tandis que \(C_2\) et \(C_3\) sont connectés en parallèle.

    Les condensateurs en série et en parallèle Les condensateurs en série et en parallèle StudySmarterFig. 4 - Les condensateurs sont maintenant combinés en série et en parallèle.

    Tout d'abord, nous définissons les capacités de chacun des condensateurs comme suit : \(C_1 = 2,0 \N, \Nmathrm{\NF}\N), \N(C_2 = 9,6 \N, \Nmathrm{\NF}\N), et \N(C_3 = 4,3 \N, \Nmathrm{\NF}\N). Nous pouvons maintenant calculer la capacité totale de \N(C_2\N) et \N(C_3\N) en utilisant la règle du condensateur parallèle comme suit

    \N[ C_{\text{p}} = 9,6 \N, \Nmathrm{\Nmu F}] + 4,3 \N, \Nmathrm{\Nmu F} + 4,3 \N- \N- \N- \N- \N- \N- \N- \N- = 13,9 \N- \N- \N- \N- \N- \N- \N- \N- \N- .\N]

    Nous pouvons maintenant appliquer la règle de la capacité en série pour trouver la capacité totale de la configuration. Le résultat est le suivant

    \[ \begin{align} \frac{1}{C_{\text{T}}} &= \frac{1}{2.0 \times 10^{-6}} \, \mathrm{F}} + \frac{1}{13.9 \times 10^{-6} \, \mathrm{F}} \\ \frac{1}{C_{\text{T}}} &= 5.7 \times 10^{5} \N- \NMathrm{\Nfrac{1}{F}} \N- C_{{text{T}} &= 1.7 \N- fois 10^{-6} \N- \N- \N- \Nmathrm{F} . \Nend{align} \]

    Énergie stockée dans les condensateurs en série et en parallèle

    Avant de calculer l'énergie totale stockée dans une configuration de condensateurs, nous définissons d'abord l'énergie stockée dans un seul condensateur comme suit

    \[ U_{\text{C}} = \frac{1}{2} \frac{Q^2}{C} ,\]

    où \(U_{{text{C}}\) est l'énergie stockée dans un seul condensateur mesurée en joules \(\mathrm{J}\), \(Q\) est la magnitude de la charge sur les plaques parallèles mesurée en coulombs \(\mathrm{C}\), et \(C\) est la capacité d'un condensateur mesurée en farads \(\mathrm{F}\).

    Énergie stockée dans les condensateurs en série

    De la même façon que nous avons calculé la capacité totale de condensateurs en série, nous calculons l'énergie totale de deux condensateurs en série. Le premier condensateur obéit à l'équation suivante

    \[ C_1 = \frac{Q_1}{V_1} ,\]

    tandis que le second condensateur obéit à l'équation suivante

    \[ C_2 = \frac{Q_2}{V_2} .\]

    Là encore, puisqu'ils sont en série, les charges \(Q\) des deux condensateurs sont égales, ce qui nous permet d'écrire

    \[ Q_1 = Q_2 = Q_{\text{T}} .\]

    L'énergie totale est donc

    \[ \begin{align} E_{\text{T}} &= E_1 + E_2 \\\N- E_{text{T}} &= \frac{1}{2} \frac{Q_1^2}{C_1} + \frac{1}{2}\frac{Q_2^2}{C_2} \\N- E_{\text{T}} &= \frac{1}{2} Q^2 \left( \frac{1}{C_1} + \frac{1}{C_2} \right) . \Nend{align} \]

    Énergie stockée dans des condensateurs en parallèle

    Dans le cas de condensateurs en parallèle, nous devons définir une autre équation de condensateur d'énergie qui fait intervenir la tension. Cette équation est donnée par

    \[ U_{\text{C}} = \frac{1}{2} CV^2 ,\]

    où \(V\) est la tension à travers le condensateur mesurée en volts \(\mathrm{V}\).

    Pour cette définition, nos deux condensateurs sont maintenant en parallèle, donc leurs tensions individuelles sont égales, ce qui nous permet d'écrire

    \[ V_1 = V_2 = V_{\text{T}} .\]

    L'énergie totale est donc

    \[ \begin{align} E_{\text{T}} &= E_1 + E_2 \\\N- E_{text{T}} &= \frac{1}{2} C_1 V_1^2 + \frac{1}{2} C_2 V_2^2 \ E_{\text{T}} &= \frac{1}{2} V^2 \left(C_1 + C_2 \right) . \Nend{align} \]

    Propriétés des condensateurs en série et en parallèle

    Récapitulons quelques propriétés importantes des condensateurs en série et en parallèle.

    1. La capacité d'un groupe de condensateurs en série est toujours inférieure à la capacité de n'importe lequel des condensateurs concernés, même celui dont la capacité est la plus faible.

    2. La capacité d'un groupe de condensateurs en parallèle sera toujours supérieure à celle de n'importe lequel des condensateurs impliqués, même celui qui a la plus grande capacité.

    Condensateurs en série et en parallèle - Principaux enseignements

    • Les condensateurs stockent de l'énergie grâce au champ électrique généré par les plaques parallèles chargées de façon opposée.
    • La capacité totale des condensateurs en parallèle est \( C_{\text{p}} = \sum_{\text{i}} C_{\text{i}}\).
    • La capacité totale des condensateurs en série est \(\frac{1}{C_{text{s}}} = \sum_{\text{i}} \frac{1}{C_{text{i}}}\).
    • L'énergie stockée dans un condensateur est donnée par \(U_{{text{C}} = \frac{1}{2} \frac{Q^2}{C}\).
    • La capacité d'un groupe de condensateurs en série est toujours inférieure à la capacité de n'importe lequel des condensateurs concernés.
    • La capacité d'un groupe de condensateurs en parallèle sera toujours supérieure à celle de n'importe lequel des condensateurs impliqués.

    Références

    1. Fig. 1 - Ensemble de condensateurs disposés sur une surface verte (https://www.pexels.com/photo/set-of-capacitors-arranged-on-green-surface-7116600/) par Nothing Ahead (https://www.pexels.com/@ian-panelo/) sous licence Pexels (https://www.pexels.com/license/).
    2. Fig. 2 - Condensateurs en parallèle, StudySmarter Originals.
    3. Fig. 3 - Condensateurs en série, StudySmarter Originals.
    4. Fig. 4 - Condensateurs en série et en parallèle, StudySmarter Originals.
    Questions fréquemment posées en Condensateurs en série et parallèle
    Comment calcule-t-on la capacité équivalente de condensateurs en série?
    Pour les condensateurs en série, l'inverse de la capacité équivalente est la somme des inverses des capacités individuelles.
    Comment calcule-t-on la capacité équivalente de condensateurs en parallèle?
    Pour les condensateurs en parallèle, la capacité équivalente est la somme des capacités individuelles.
    Quels sont les effets de brancher des condensateurs en série?
    Brancher des condensateurs en série diminue la capacité totale mais augmente la tension de rupture.
    Quels sont les effets de brancher des condensateurs en parallèle?
    Brancher des condensateurs en parallèle augmente la capacité totale mais la tension de rupture reste la même qu'un seul condensateur.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Quelle est l'équation de la capacité totale pour des condensateurs en parallèle ?

    Quelle est l'équation de la capacité totale pour des condensateurs en série ?

    Quel est le symbole du circuit d'un condensateur à plaques parallèles ?

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Physique-chimie

    • Temps de lecture: 12 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !