Tu as probablement du chlorure de sodium, NaCl, chez toi en ce moment. Tu le connais sous le nom de sel de table. Bien que les cristaux que l'on trouve dans ta salière soient généralement petits, tu peux faire pousser de plus gros cristaux à la maison simplement en chauffant une solution de sel saturée et en la laissant refroidir. Ces cristaux seront durs et cassants. Le sodium métal pur, en revanche, est doux et malléable. Tu peux facilement le couper avec un couteau à beurre. Qu'est-ce qui rend le sodium si différent physiquement lorsqu'il est seul ?
Les métaux peuvent former des composés avec des non-métaux en donnant les électrons de leur enveloppe externe (voir la liaison ionique pour plus d'informations). Les métaux forment des ions positifs tandis que les non-métaux, qui acceptent les électrons, forment des ions négatifs. Cependant, si un métal est seul, il ne peut pas donner d'électrons parce qu'il n'y a pas d'atome non métallique qui puisse les accepter. Au lieu de cela, il fait quelque chose d'autre : il établit une liaison métallique.
Une liaison métallique est l'attraction électrostatique entre un réseau d'ions positifs et une mer d'électrons délocalisés.
Décomposons cela et explorons chaque terme ensemble.
Électrons délocalisés
Lorsque des atomes de métal se lient les uns aux autres, leurs orbitales électroniques externes fusionnent. Les électrons ne sont plus confinés à un atome particulier et sont libres de se déplacer à l'intérieur des orbitales fusionnées, qui forment une région qui s'étend sur tout le métal. On dit que ces électrons sont délocalisés et qu'ils forment une mer de délocalisation.
Attraction électrostatique
Les atomes de métal forment des ions avec une charge positive, puisqu'ils ne sont désormais plus associés à leurs électrons de l'enveloppe externe.
Les ions chargés positivement sont appelés cations.
Les ions positifs sont alors attirés par la mer négative d'électrons par attraction électrostatique, un peu comme dans les composés ioniques. L'attraction se propage à l'ensemble du métal et forme ainsi une structure en treillis géante. Géant" signifie simplement qu'il est constitué d'un nombre important mais indéterminé d'atomes, et "treillis" signifie qu'il contient un arrangement répétitif.
Bien que le métal contienne des ions positifs, aucun électron n'a été perdu dans l'ensemble. Ils sont simplement délocalisés dans la structure du métal. Par conséquent, les métaux ont une charge neutre et nous les représentons en utilisant uniquement leur symbole chimique. Par exemple, la formule moléculaire du sodium est Na.
Fig. 1 - Schéma montrant la liaison dans un métal
Revenons à notre exemple de sodium, Na. Le sodium a une configuration électronique . Lorsque les atomes de sodium se lient entre eux, leurs orbitales 3s fusionnent et l'électron de valence dans l'orbitale de chaque atome est libre de se déplacer dans la région nouvellement fusionnée. Il en résulte des ions positifs avec une charge de +1 entourés d'une mer d'électrons délocalisés, comme le montre la figure ci-dessous.
Fig. 2 - La liaison dans le sodium, Na. Chaque ion de sodium est attiré par la mer de délocalisation qui l'entoure par attraction électrostatique
Le béryllium, quant à lui, a la configuration électronique et possède deux électrons de valence. Chaque atome de béryllium perd deux électrons de sa couche externe pour former des ions avec une charge de +2.
Fig. 3 - La liaison dans le béryllium
Facteurs influençant la force de la liaison métallique
Certains métaux sont beaucoup plus forts que d'autres. Cela est dû à la différence de niveaux d'attraction électrostatique entre les différents métaux. Il existe deux facteurs qui affectent la force de la liaison métallique, et nous allons les explorer maintenant.
Charge sur l'ion
Un ion positif avec une charge plus élevée sera plus attiré par la mer négative d'électrons qu'un ion avec une charge plus faible. N'oublie pas qu'une liaison métallique est simplement l'attraction électrostatique entre les ions métalliques positifs et la mer d'électrons délocalisés, ce qui crée une liaison plus forte.
L'aluminium, par exemple, perd trois électrons de valence pour former un ion de charge +3, alors que le magnésium ne perd que deux électrons pour former un ion de charge +2, d'où des liaisons métalliques beaucoup plus faibles.
Taille de l'ion
Dans les métaux dont les ions sont plus grands, le noyau positif est beaucoup plus éloigné des électrons délocalisés. Cela affaiblit l'attraction électrostatique entre eux. Par exemple, les ions positifs du magnésium et du calcium ont tous deux la même charge, mais le calcium contient des ions beaucoup plus gros et a donc des liaisons métalliques plus faibles.
Propriétés des métaux
En raison de leur disposition unique d'ions positifs dans une mer d'électrons délocalisés, les métaux ont certaines propriétés qui les différencient des composés ioniques et covalents. Nous utilisons le cuivre, par exemple, pour fabriquer des fils et des tuyaux. Nous n'utiliserions pas de composés ioniques comme le chlorure de sodium pour cela. Ils se dissoudraient s'ils étaient humidifiés et ne conduiraient pas l'électricité lorsqu'ils sont solides. De plus, les composés ioniques sont fragiles et se cassent facilement s'ils sont sollicités.
Il en va tout autrement des métaux.
Ils ont des points de fusion et d'ébullition élevés. Cela est dû à la force de leur attraction électrostatique qui s'étend à l'ensemble du métal. Tous les facteurs explorés ci-dessus qui augmentent la force de la liaison métallique augmentent les points de fusion et d'ébullition d'un métal.
Ils sont ductiles, c' est-à-dire qu'ils peuvent être étirés en fils, et malléables, c'est-à-dire qu'ils peuvent être martelés pour leur donner une forme. Cela est dû au fait que les ions positifs forment des rangées régulières dans la mer d'électrons qui peuvent rouler les uns sur les autres en douceur.
Ils ne sont pas cassants et sont généralement solides. Là encore, c'est parce que les rangées d'ions métalliques conservent leurs liens avec les électrons délocalisés lorsqu'ils glissent les uns sur les autres.
Ce sont de bons conducteurs de chaleur et d'électricité, car les électrons délocalisés sont libres de se déplacer dans le métal et de porter une charge. Les métaux qui forment des ions plus chargés ont plus d'électrons délocalisés et sont donc de meilleurs conducteurs que les métaux dont les ions sont moins chargés.
Ils sont insolubles.
Les alliages
Nous savons que le sodium est relativement mou. Le fer pur l'est aussi. Cela pose des problèmes lorsqu'il s'agit de fabriquer des produits utiles à partir de métaux. Les clous en fer ne serviraient pas à grand-chose si tu pouvais facilement les plier et les déformer. Pour rendre les métaux purs plus résistants, nous les transformons en alliages.
Les alliages sont des mélanges de deux éléments ou plus, dont l'un au moins est un métal.
Les atomes de taille différente du deuxième élément d'un alliage perturbent les rangées régulières d'ions métalliques, les empêchant de glisser autant les uns sur les autres, ce qui les rend beaucoup plus durs. Le fer contient souvent des quantités soigneusement contrôlées de carbone, et l'acier est également un alliage courant fabriqué à partir de fer.
Fig. 4 - Les atomes dans un alliage. Ici, les plus petits atomes perturbent la structure régulière du réseau des plus gros atomes de métal et les empêchent de glisser les uns sur les autres. Cela renforce le composé
Liaison métallique - Principaux enseignements
Une liaison métallique est l'attraction électrostatique entre un réseau d'ions métalliques positifs et une mer d'électrons délocalisés.
Les facteurs qui influencent la force de la liaison métallique comprennent la charge de l'ion et la taille de l'ion.
Les métaux sont généralement solides, non cassants, bons conducteurs de chaleur et d'électricité, insolubles et ont des points de fusion et d'ébullition élevés.
Les alliages sont des mélanges de deux éléments, dont l'un au moins est un métal. Ils sont plus résistants que les métaux purs.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.