Merci de votre intérêt pour les préférences d’apprentissage !
Merci pour ton intérêt pour les différentes méthodes d’apprentissage ! Quelle méthode préfères-tu ? (par exemple, « Audio », « Vidéo », « Texte », « Pas de préférence »)
(optionnel)
Bien que tu te sois bien préparé à l'avance, tu n'as réussi à résoudre que \(200) exercices. Quelle est la probabilité que le professeur choisisse \(10\) questions que tu as résolues ?
On peut répondre à ce type de question à l'aide de la distribution binomiale, et dans cet article, tu en apprendras plus à ce sujet.
Qu'est-ce qu'une distribution binomiale ?
Une distribution binomiale est une distribution de probabilité discrète utilisée pour calculer la probabilité d'observer un certain nombre de succès dans un nombre fini d'essais de Bernoulli. Un essai de Bernoulli est une expérience aléatoire dans laquelle tu ne peux avoir que deux résultats possibles qui s'excluent mutuellement, dont l'un est appelé succès et l'autre échec.
Si \(X\) est une variable aléatoire binomiale avec \(X\sim \text{B}(n,p)\), alors la probabilité d'obtenir exactement \(x\) succès dans \(n\) essais de Bernoulli indépendants est donnée par la fonction de masse de probabilité :
Consulte notre article Distribution binomiale pour plus de détails sur cette distribution.
Prenons un exemple pour voir comment calculer les probabilités dans une distribution binomiale.
Suppose que tu vas passer un test à choix multiples avec \(10\) questions, où chaque question a \(5\) réponses possibles, mais où seule \(1\) option est correcte. Si tu devais deviner au hasard pour chaque question.
a) Quelle est la probabilité que tu devines exactement \(4) réponses correctes ?
b) Quelle est la probabilité que tu répondes correctement à \(2\) ou moins ?
c) Quelle est la probabilité que tu devines correctement 8 ou plus ?
Solution :Tout d'abord, notons qu'il y a \N(10\N) questions, donc \N(n=10\N). Maintenant, étant donné que chaque question comporte 5 choix et que seul 1 choix est correct, la probabilité d'obtenir le bon choix est de 4 (\dfrac{1}{5}\), donc de 4 (p=dfrac{1}{5}\). Par conséquent ,
\[1-p=1-\dfrac{1}{5}=\frac{4}{5} .\]
a) La probabilité d'obtenir exactement \(4\) correctement est donnée par
\N- [\N- Début{align} P(X=4)&={10\choose{4}}\left(\frac{1}{5}\right)^4\left(\frac{4}{5}\right)^{6} \\N- \N- Environ 0,088. \N- [end{align}\N]
b) La probabilité d'obtenir \(2\) ou moins de réponses correctes est donnée par
c) La probabilité d'obtenir \(8\) ou plus de réponses correctes est donnée par [\N-begin{align}]. P(X\geq 8)&=P(X=8)+P(X=9)+P(X=10) \\N- &= {10\choisir{8}} \left(\frac{1}{5}\right)^8\left(\frac{4}{5}\right)^{2}+{10\choose{9}}\left(\frac{1}{5}\right)^9\left(\frac{4}{5}\right)^{1} \\ & \quad+{10\choose{10}}\left(\frac{1}{5}\right)^{10}\left(\frac{4}{5}\right)^{0} \N- &\N-Approximativement 0.00008.\N- [end{align}\N]
En d'autres termes, deviner les réponses est une très mauvaise stratégie de test si c'est tout ce que tu comptes faire !
Dérivation de la moyenne et de la variance de la distribution binomiale
Note qu'une variable binomiale \(X\) est la somme de \(n\) essais de Bernoulli indépendants avec la même probabilité de succès \(p\), c'est-à-dire \(X=X_1+X_2+\ldots+X_n\), où chaque \(X_i\) est une variable de Bernoulli. À partir de là, voyons comment dériver les formules de la moyenne et de la variance.
Calcul de la moyenne de la distribution binomiale
Pour calculer la valeur attendue de \(X\), à partir de ce qui précède, tu as
Moyenne et écart type pour une distribution binomiale
Dans la section précédente, tu as vu que la moyenne de la distribution binomiale est
\[\text{E}(X)=np,\]
et que la variance est
\[\text{Var}(X)=np(1-p).\]
Pour obtenir l'écart-type, \(\sigma\), de la distribution binomiale, il suffit de prendre la racine carrée de la variance, soit
\[\sigma = \sqrt{np(1-p) }.\]
Formule pour la moyenne de la distribution binomiale
La moyenne d'une variable est la valeur moyenne que l'on s'attend à observer lorsqu'une expérience est réalisée plusieurs fois.
Si \(X\) est une variable aléatoire binomiale avec \(X\sim \text{B}(n,p)\), alors la valeur attendue ou la moyenne de \(X\) est donnée par \[\text{E}(X)=\mu=np.\N].
Formule pour la variance d'une distribution binomiale
La variance d'une variable est une mesure de la différence entre les valeurs et la moyenne.
Si \(X\) est une variable aléatoire binomiale avec \(X\sim \text{B}(n,p)\), alors :
La variance de \(X\N) est donnée par \N[\text{Var}(X)=\sigma^2=np(1-p).\N].
L'écart-type de \(X\) est la racine carrée de la variance et est donné par \N[\sigma=\sqrt{np(1-p)}.\N].
Pour une explication plus détaillée de ces concepts, tu peux consulter notre article Moyenne et variance des distributions de probabilités discrètes.
Exemples de moyenne et de variance de la distribution binomiale
Examinons quelques exemples, en commençant par un exemple classique.
Soit \N(X\N) une variable aléatoire telle que \N(X\Nsim \Ntext{B}(10,0,3)\N). Trouve la moyenne \(\text{E}(X)\) et la variance \(\text{Var}(X)\).
Solution :
En utilisant la formule de la moyenne, tu as
\[\text{E}(X)=np=(10)(0.3)=3.\]
Pour la variance, tu as
\[\text{Var}(X)=np(1-p) =(10)(0.3)(0.7)=2.1.\]
Prenons un autre exemple.
Soit \N(X\N) une variable aléatoire telle que \N(X\Nsim \Ntext{B}(12,p)\N) et \N(\Ntext{Var}(X)=2,88\N). Trouve les deux valeurs possibles de \(p\N).
Solution :
D'après la formule de la variance, tu as
\[\text{Var}(X)=np(1-p)=2.88.\]Comme tu connais \(n=12\), en le substituant à l'équation ci-dessus, tu obtiens
\N- [12p(1-p)=2.88,\N]
ce qui est la même chose que
\N- p(1-p)=0,24\N]
ou
\N- [p^2-p+0,24=0,\N]
Note que tu as maintenant une équation quadratique, donc en utilisant la formule quadratique, tu obtiens que les solutions sont \(p=0,4\) et \(p=0,6\).
L'exemple précédent montre que tu peux avoir deux distributions binomiales différentes avec la même variance !
Enfin, note qu'en utilisant la moyenne et la variance d'une variable, tu peux retrouver sa distribution.
Soit \N(X) une variable aléatoire telle que \N(X\sim \text{B}(n,p)\N), avec \N(\text{E}(X)=3,6\N) et \N(\text{Var}(X)=2,88\N).
Trouve les valeurs de \N(n) et \N(p).
Solution :
Rappelle que d'après les formules de la moyenne et de la variance
\[\text{E}(X)=np=3.6\]
et
\[\text{Var}(X)=np(1-p)=2.88.\]
A partir de là, en faisant des substitutions, tu as
\[3.6(1-p)=2.88,\]
ce qui implique que
\[1-p=\frac{2.88}{3.6}=0.8.\]
Par conséquent, \(p=0,2\) et encore une fois, à partir de la formule de la moyenne, vous avez
\[n=\frac{3.6}{0.2}=18.\]
La distribution originale est donc \N (X\sim \text{B}(18,0.8)\N).
Moyenne et variance de la distribution binomiale - Principaux enseignements
Si \(X\) est une variable aléatoire binomiale avec \(X\sim \text{B}(n,p)\). Alors, [P(X=x)={n\choose{x}}p^x(1-p)^{n-x}]pour \N(x=0,1,2,\Npoints,n\N) où [\Ndisplaystyle {n\Nchoose{x}}=\Nfrac{n!}{x !(n-x)!}].
Si \(X\sim \text{B}(n,p)\), alors la valeur attendue ou la moyenne de \(X\) est \(\text{E}(X)=\mu=np\).
Si \(X\sim \text{B}(n,p)\), alors la variance est \(\text{Var}(X)=\sigma^2=np(1-p) \) et l'écart type est \(\sigma=\sqrt{np(1-p)}\).
Apprends plus vite avec les 8 fiches sur Variance de la Distribution Binomiale
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Variance de la Distribution Binomiale
Qu'est-ce que la variance d'une distribution binomiale?
La variance d'une distribution binomiale mesure la dispersion des résultats. Elle est calculée par la formule: Variance = n * p * (1 - p).
Comment calcule-t-on la variance d'une distribution binomiale?
Pour calculer la variance d'une distribution binomiale, utilisez la formule: Variance = n * p * (1 - p), où n est le nombre d'essais et p la probabilité de succès.
Pourquoi la variance est-elle importante dans une distribution binomiale?
La variance est importante car elle indique la dispersion des résultats autour de la moyenne, aidant à comprendre la variabilité des données.
Quelle est la relation entre la moyenne et la variance dans une distribution binomiale?
Dans une distribution binomiale, la moyenne est n * p et la variance est n * p * (1 - p). La variance décrit la dispersion par rapport à la moyenne.
Comment tu t'assures que ton contenu est précis et digne de confiance ?
Chez StudySmarter, tu as créé une plateforme d'apprentissage qui sert des millions d'étudiants. Rencontre les personnes qui travaillent dur pour fournir un contenu basé sur des faits et pour veiller à ce qu'il soit vérifié.
Processus de création de contenu :
Lily Hulatt
Spécialiste du contenu numérique
Lily Hulatt est une spécialiste du contenu numérique avec plus de trois ans d’expérience en stratégie de contenu et en conception de programmes. Elle a obtenu son doctorat en littérature anglaise à l’Université de Durham en 2022, a enseigné au Département d’études anglaises de l’Université de Durham, et a contribué à plusieurs publications. Lily se spécialise en littérature anglaise, langue anglaise, histoire et philosophie.
Gabriel Freitas est un ingénieur en intelligence artificielle possédant une solide expérience en développement logiciel, en algorithmes d’apprentissage automatique et en IA générative, notamment dans les applications des grands modèles de langage (LLM). Diplômé en génie électrique de l’Université de São Paulo, il poursuit actuellement une maîtrise en génie informatique à l’Université de Campinas, avec une spécialisation en apprentissage automatique. Gabriel a un solide bagage en ingénierie logicielle et a travaillé sur des projets impliquant la vision par ordinateur, l’IA embarquée et les applications LLM.
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.