Probabilité

Mobile Features AB

En mathématiques, la probabilité mesure la possibilité qu'un événement se produise. Il y a diverses façons d'effectuer le calcul d'une probabilité. Nous avons toujours droit à la formule qui définit la probabilité d'un événement. Pourtant, il peut être plus commode d'utiliser d'autres formules de probabilité. Nous pouvons avoir une situation où certaines conditions s'imposent, ce qui implique une probabilité conditionnelle. Lorsque nous voulons considérer les probabilités de plusieurs événements en même temps, nous avons recours à un arbre de probabilité. Enfin, les lois de probabilités nous fournissent des formules applicables à certains phénomènes.

C'est parti

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Probabilité

  • Temps de lecture: 6 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • Last Updated: 07.11.2022
  • reading time:6 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 07.11.2022
  • reading time:6 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Formule : probabilité

    La formule pour calculer la probabilité d'un événement appelé \(A\) est comme suit : \[ P(A) = \frac{nombre \ d'issues \ favorables}{nombre \ total \ d'issues} \]

    Une probabilité peut être écrite sous forme de fraction, sous forme décimale ou comme un pourcentage.

    Une issue est le résultat d'une expérience aléatoire. Les issues favorables sont les issues qui permettent de réaliser un événement probabiliste.

    Calculons la probabilité d'obtenir un nombre pair avec un lancer de dé.

    L'événement est « obtenir un nombre pair ».

    Les issues possibles sont 1, 2, 3, 4, 5 ou 6. Donc, le nombre d'issues total est 6.

    Les issues favorables sont les nombres pairs : 2, 4 et 6. Donc, le nombre d'issues favorables est 3.

    Ainsi, la probabilité d'obtenir un nombre pair est \( \frac{3}{6} = \frac{1}{2} \) ou \(0{,}5\) ou encore \(50 \%\).

    Une probabilité est toujours entre 0 et 1, comprise.

    Probabilité conditionnelle

    Il y a des événements indépendants, qui n'ont aucun lien entre eux. Cependant, pour les événements qui peuvent avoir un effet l'un sur l'autre, il convient parfois d'utiliser la formule de probabilité conditionnelle. Une probabilité conditionnelle est une probabilité calculée sachant qu'un autre événement s'est déjà produit.

    La probabilité de l'événement B sachant que l'événement A s'est déjà passé s'écrit \(P(B|A)\). La probabilité conditionnelle est donnée par la formule suivante : \[P(B|A) = \frac{P(A \cap B)}{P(A)}\]

    \(P(A \cap B) \) représente la probabilité que les deux événements \(A\) et \(B\) se sont passés.

    Arbre de probabilité

    Les arbres de probabilité sont très utiles pour représenter les issues possibles de multiples expériences aléatoires. Dans un arbre de probabilité, nous écrivons les événements aux bouts de branches et les probabilités correspondantes sur la branche. Nous pouvons ensuite les utiliser pour calculer les probabilités de plusieurs événements consécutifs ou simultanés, en multipliant les chiffres le long des branches.

    Probabilité Exemple arbre de probabilité StudySmarterFig. 1 - Exemple d'un arbre de probabilité

    Dans cet arbre de probabilité, nous représentons les issues de deux jeux de pile ou face. L'issue « pile » est représentée par un T et l'issue « face » est représentée par un H. Si nous supposons que la pièce de monnaie est équilibrée, alors la probabilité de chaque résultat est \( \frac{1}{2} \).

    Loi de probabilité

    Les lois de probabilité sont utilisées pour modéliser de divers phénomènes réels, comme le nombre de clients entrant dans un magasin ou le comportement de molécules.

    Une loi de probabilité associe une probabilité à chaque issue d'une expérience aléatoire.

    Il peut s'agir d'un tableau où nous listons chaque issue et sa probabilité correspondante. Une loi de probabilité peut également prendre la forme d'une formule. C'est le cas notamment de la loi normale, utilisée pour modéliser de nombreuses situations.

    Calcul des probabilités

    Voyons quelques exemples de situations où nous pouvons appliquer les différentes méthodes abordées dans cet article.

    1. Un sondage a trouvé que parmi 88 adultes, 32 fument des cigarettes régulièrement. Calculons la probabilité qu'une personne choisie au hasard est fumeur.

    Ici, le nombre d'issues total est de 88. Le nombre d'issues favorables est de 32. La probabilité que quelqu'un choisi au hasard est fumeur est donc de \( \frac{32}{88} = \frac{4}{11} = 0{,}36 \).

    2. Supposons que la probabilité que quelqu'un commence à fumer quotidiennement est de 0,2. La probabilité que quelqu'un commence à fumer et développe le cancer du poumon par la suite est de 0,15. Calculons la probabilité que quelqu'un développe le cancer du poumon sachant que cette personne a commencé à fumer.

    Soit A l'événement que quelqu'un commence à fumer régulièrement.

    Soit B l'événement que quelqu'un développe le cancer du poumon.

    Alors, \(P(A) = 0{,}2\) et \(P(A \cap B) = 0{,}15\). Nous pouvons donc appliquer la formule de probabilité conditionnelle.

    Ainsi, \(P(B|A) = \frac{0{,}15}{0{,}2} = 0{,}75\)

    Utilisons l'arbre de probabilité ci-dessous pour établir la loi de probabilité pour deux jeux de pile ou face consécutifs. Ici, l'événement « obtenir face » est représenté par H et l'événement « obtenir pile » est représenté par T.

    Probabilité Arbre de probabilité StudySmarterFig. 2 - Utilisation d'un arbre de probabilité

    Il s'agit de trouver les probabilités de toutes les issues possibles. Ici, les issues possibles sont deux fois face, deux fois pile et une fois pile, une fois face. En multipliant le long d'une branche, nous obtenons que la probabilité d'obtenir deux fois face est de \(\frac{1}{4}\).

    Probabilité Calcul arbre de probabilité StudySmarterFig. 3 - Calculer une probabilité avec un arbre de probabilité

    En procédant de la même façon, nous obtenons la probabilité d'obtenir deux fois pile.

    Probabilité Calcul arbre de probabilité StudySmarterFig. 4 - Calculer une probabilité avec un arbre de probabilité

    Remplissons un tableau pour résumer la loi de probabilité pour cette expérience aléatoire.

    Deux fois faceDeux fois pileUne fois pile, une fois face
    \(\frac{1}{4}\) \(\frac{1}{4}\)?

    Comme la somme des probabilités est 1, la probabilité correspondante à la dernière issue est \(1-(\frac{1}{4} +\frac{1}{4}) = \frac{1}{2}\).

    Enfin, la loi de probabilité pour cette expérience aléatoire est donné par ce tableau :

    Deux fois faceDeux fois pileUne fois pile, une fois face
    \(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{2}\)

    Probabilité - Points clés

    • La probabilité d'un événement appelé \(A\) est définie par la formule \( P(A) = \frac{nombre \ d'issues \ favorables}{nombre \ total \ d'issues} \).
    • La probabilité conditionnelle de l'événement \(B\), sachant que \(A\) s'est déjà passé, est donnée par la formule suivante : \(P(B|A) = \frac{P(A \cap B)}{P(A)}\).
    • Sur un arbre de probabilité, nous écrivons les événements aux bouts de branches et les probabilités correspondantes sur les branches.
    • Une loi de probabilité associe une probabilité à chaque issue d'une expérience aléatoire.
    Questions fréquemment posées en Probabilité

    Comment faire un arbre de probabilité ? 

    Pour faire un arbre de probabilité, il faut commencer par lister toutes les issues possibles des expériences aléatoires. Ensuite, pour la première expérience, il faut dessiner autant de branches qu'il y a d'issues. Pour chaque issue, écris la probabilité correspondante sur la branche. Au bout de chacune de ces branches, dessine autant de branches qu'il y a d'issues pour la deuxième expérience et écris la probabilité correspondante sur chaque branche. Continue ainsi pour toutes les expériences. 

    Comment calculer le nombre d'issues ? 

    Pour calculer le nombre d'issues d'une expérience aléatoire, il faut considérer les différents résultats possibles. Cela peut impliquer des calculs de combinaisons et de permutations. 

    Comment faire un arbre pondéré inversé ? 

    Pour faire un arbre pondéré inversé, il faut utiliser le théorème de probabilités totales ou le théorème de Bayes afin de calculer les probabilités conditionnelles dans le sens opposé. 

    Comment calculer la probabilité d'un événement ? 

    Pour calculer la probabilité d'un événement, nous devons diviser le nombre d'issues favorables par le nombre total d'issues. Nous pouvons également appliquer la loi de probabilité, si nous la conaissons.

    Sauvegarder l'explication
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 6 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !