Intervalle de confiance pour la moyenne de la population
Supposons que tu sois propriétaire d'un café et que tu envisages d'ajouter une voie de circulation pour les clients. L'une des choses à prendre en compte est de savoir combien de temps les gens feront la queue à l'intérieur pour leur café par rapport à combien de temps ils feront la queue pour leur café. Tu fais donc une enquête au hasard dans les cafés qui ont une voie de passage et tu découvres que sur les 40 voitures que tu as vues passer dans la file, il a fallu en moyenne 14,5 minutes avec un écart type de 1,7 minute.
Tupeuxdoncdirequetupensesqueletempsmoyend'attentedanslafiled'attentedudrive-inestd'environ14,5minutes, maistunepeuxcertainementpasdirequ'ilestexactement de 14,5 minutes. Le temps d'attente d'une personne dans sa voiture va varier en fonction de l'échantillon que tu prélèves, donc ce que tu veux dire, c'est que le temps d'attente moyen dans la file d'attente du drive-in est d'environ \(14,5\) minutes.
Alors, comment peux-tu avoir une meilleure idée de ce qui se passe avant de dépenser de l'argent pour construire un drive-in ? Tu peux faire un intervalle de confiance pour la moyenne de la population !
Les cafés drive-in ne sont pas tous très chics !
Définition de l'intervalle de confiance pour une moyenne de population
Rappelle-toi que les intervalles de confiance sont un type d'inférence statistique. Ils te permettent de trouver une plage de valeurs où tu peux être relativement sûr que la vraie valeur sera. Dans ce cas, tu construis un intervalle de confiance pour une moyenne de population.
La forme générale de l'estimation d'un intervalle de confiance pour une moyenne de population est la suivante
moyenne de l'échantillon \(\pm\) valeur critique \(\times\) erreur standard de la statistique.
Ici, la moyenne de l'échantillon, \(\bar{x}\), est un estimateur sans biais de la moyenne de la population \(\mu\) tant que la taille de l'échantillon \(n\) est telle que \(n > 30\) afin que tu puisses appliquer le théorème de la limite centrale. N'oublie pas que le fait de pouvoir utiliser le théorème de la limite centrale implique que tu peux supposer que ton échantillon est approximativement normal, même si la population elle-même ne l'est pas.
Commençons par examiner le cas où tu connais l'écart-type de la population, \(\sigma\). En général, tu ne le sauras pas, mais c'est un cas de départ utile à étudier. L'écart type de l'échantillon est alors :
\[ \sigma_{\bar{x}} = \frac{\sigma}{n} \].
Ainsi, lorsque la taille de l'échantillon est suffisamment grande et que \(\sigma\) est connu, l'intervalle de confiance est donné par :
\[ \bar{x} \pm (z \text{ valeur critique})\Nà gauche(\frac{\sigma}{\sqrt{n}}\Nà droite)\N]
Pour revenir à l'exemple du café, la moyenne de l'échantillon est de \N(\Nbar{x} = 14,5\N) minutes, la taille de l'échantillon est de \N(n=40\N). Supposons que tu saches également que l'écart-type de la population est de \(\sigma = 2\) minutes. Trouve un intervalle de confiance de \(95\%\) pour le temps d'attente au drive-in.
Solution :
Rappelle-toi que la valeur de \(z\)pour un intervalle de confiance de \(95\%\) est \(1,96\). L'intervalle de confiance est donc :
Tu peux donc être certain que le véritable temps d'attente moyen pour le drive-in se trouve dans l'intervalle de confiance.
Qu'en est-il lorsque tu n'as pas l'écart-type de la population ?
Construire l'intervalle de confiance pour la moyenne de la population
Tout d'abord, examinons les conditions qui doivent être remplies avant que tu puisses construire l'intervalle de confiance pour une moyenne de population lorsque tu ne connais pas l'écart type de la population.
Soit la taille de l'échantillon est suffisamment grande (\(n\ge 30\) ), soit la distribution de la population est approximativement normale.
L'échantillon est aléatoire ou on peut raisonnablement supposer qu'il est représentatif de l'ensemble de la population.
Lorsque ces conditions sont remplies, tu peux construire l'intervalle de confiance pour la moyenne de la population. Contrairement au cas où tu connais l'écart-type de la population et que tu peux utiliser la valeur \(z\) comme valeur critique, lorsque tu ne connais pas l'écart-type de la population, tu devras utiliser la distribution \(t\) à la place.
Intervalle de confiance pour la formule de la moyenne de la population
Lorsque les conditions de construction d'un intervalle de confiance pour la moyenne de la population sont remplies, la formule de l'intervalle de confiance devient
Ici, \(s\) est l'écart type de l'échantillon. La valeur critique de \(t\) est basée sur le degré de liberté, \(df\), qui est calculé par :
\N[df = n-1\N]
et du niveau de confiance que tu utilises.
Calculer l'intervalle de confiance pour la moyenne de la population
Revenons à l'exemple du café au début de l'article. La moyenne de l'échantillon est de \(\bar{x} = 14,5\) minutes, la taille de l'échantillon est de \(n=40\), et l'écart type de l'échantillon est de \(s=1,7\) . La taille de l'échantillon est suffisamment importante pour construire un intervalle de confiance, et il est raisonnable de supposer que les échantillons du café au volant et de la voiture sont aléatoires.
Suppose que tu veuilles construire un intervalle de confiance de \(95\%\). Le degré de liberté est :
\N[ df = n- 1 = 39\N]
Si tu utilises un tableau de \(t\), tu ne trouveras pas \(39\) degrés de liberté sur le tableau ! En effet, pour tout degré de liberté supérieur à \N(30\N), l'augmentation n'est pas très importante lorsque tu augmentes simplement le nombre de degrés de liberté de \N(1\N).
C'est pourquoi tu verras les tableaux augmenter de \(1\N) jusqu'à \N(30\N), puis commencer à augmenter de \N(10\N). La différence entre la valeur critique de \(t\) pour \(df = 39\) et \(df = 40\) n'est pas assez importante pour affecter tes calculs, tu peux donc utiliser la valeur de la table pour \(df = 40\) et un intervalle de confiance de \(95\) à la place. Tu découvriras alors que la valeur critique appropriée de \(t\) est \(2,02).
L'intervalle de confiance pour la moyenne de la population est alors :
Tu dois encore interpréter l'intervalle de confiance et communiquer tes résultats à d'autres personnes. Tu peux dire deux choses :
La méthode utilisée pour construire l'estimation de l'intervalle de confiance permettra de saisir la moyenne réelle de la population dans \(95\%\) des cas.
Tu es certain que le temps moyen réel nécessaire pour obtenir un café dans un drive-in est compris entre 13,96 minutes et 15,04 minutes.
Exemples d'intervalles de confiance pour les moyennes de population
Il se peut que tu doives déterminer à l'avance le nombre d'échantillons dont tu as besoin pour t'assurer que la marge d'erreur est relativement faible. Cela peut être important lorsque la collecte de données est coûteuse ou prend du temps. Rappelle-toi que la marge d'erreur est définie comme l'erreur d'estimation maximale probable à laquelle tu peux t'attendre lorsque tu utilises la statistique comme estimateur.
La marge d'erreur est donnée par la formule suivante :
tant que les données ne sont pas trop asymétriques.
Prenons un exemple où tu dois utiliser la marge d'erreur estimée pour trouver la taille de l'échantillon.
Supposons que quelqu'un mette en place une bourse d'études qui inclura le coût des manuels scolaires du collège.
Pour l'estimation du coût d'un semestre d'université plus les livres, la marge d'erreur sur le coût des manuels doit être inférieure à \N(\N$ 30\N). En se rendant à la librairie universitaire la plus proche, on constate que le coût des manuels varie entre \N(40$) et \N(385$). Combien d'échantillons du prix des manuels scolaires la personne chargée de mettre en place la bourse doit-elle prendre pour que la marge d'erreur soit inférieure à \(\$ 25\) ?
La taille de l'échantillon doit donc être d'au moins \(n=46\) pour que la marge d'erreur soit inférieure à \(\$ 25\).
Pour construire un intervalle de confiance pour la moyenne d'une population, tu as besoin de \(n \ge 30\). Cela signifie que la taille minimale de l'échantillon est de \(n=46\) et qu'elle serait suffisante pour satisfaire à la condition de construction de l'intervalle pour le coût moyen d'un manuel universitaire et pour que la marge d'erreur soit inférieure à \(\$ 25\).
Prenons un autre exemple.
Comme tu aimes le café, tu veux construire un café dans ta région. Tu vis dans une grande région métropolitaine, et l'une des choses que tu dois découvrir est le prix moyen d'un grand moka dans un café indépendant de ta région. Il y a en fait \(590\) cafés dans ta ville, mais \(385\) d'entre eux appartiennent tous à la Fancy Pants Corporation, tu as donc l'intention d'ignorer leurs prix.
Après avoir choisi un échantillon aléatoire de 10 cafés indépendants, tu découvres que le prix d'un grand moka varie entre 6,75 et 9,95 dollars. Quelle taille d'échantillon dois-tu utiliser pour obtenir une marge d'erreur inférieure à \(\$ 1\$) ?
D'après cela, il te suffirait d'un échantillon de \(3\) pour que la marge d'erreur soit inférieure à \(\$ 1\).
Cela ne veut pas dire que tu ne dois utiliser que des échantillons de \(3\) ! Rappelle-toi que pour obtenir un intervalle de confiance pour le prix moyen d'un grand moka, tu as besoin d'un échantillon d'une taille d'au moins \(30\).
Construisons maintenant l'intervalle de confiance pour le prix du café.
Sur les \(205\) cafés indépendants, tu choisis \(30\) comme échantillon aléatoire et tu les appelles pour connaître le prix de leur grand moka. Tu trouves que le prix moyen est de 8 $ avec un écart type de 1,25 $. Construis et interprète un intervalle de confiance de \(95\%\) pour le prix d'un grand moka dans un café indépendant.
Solution :
Avec un échantillon de \(n=30\), le degré de liberté est :
\N[ df = n- 1 = 29\N]
Avec \(df = 29\) et un intervalle de confiance de \(95\%\), la valeur critique appropriée de \(t\) est \(2,05\), qui peut être trouvée à l'aide d'une table ou d'une calculatrice. L'intervalle de confiance pour la moyenne de la population est alors :
La méthode utilisée pour construire l'estimation de l'intervalle de confiance permet de saisir la moyenne réelle de la population dans \(95\%\) des cas.
Tu es sûr(e) que le prix moyen réel d'un grand moka se situe entre 7,53 et 8,47 dollars dans un café indépendant de ta région.
Intervalle de confiance pour la moyenne d'une population - Principaux enseignements
Deux conditions doivent être remplies pour construire un intervalle de confiance pour la moyenne d'une population :
Soit la taille de l'échantillon est suffisamment grande (\(n\ge 30\) ), soit la distribution de la population est approximativement normale.
L'échantillon est aléatoire ou il est raisonnable de supposer qu'il est représentatif de l'ensemble de la population.
Si tu connais l'écart-type de la population, l'intervalle de confiance est donné par
\[ \bar{x} \pm (z \text{ valeur critique})\left(\frac{\sigma}{\sqrt{n}}\right)\]où \(\bar{x} \) est la moyenne de l'échantillon, \(n\) est la taille de l'échantillon, et \(\sigma\) est l'écart-type de la population.
Si tu ne connais pas l'écart type de la population, la formule de l'intervalle de confiance est la suivante
où \(\bar{x} \) est la moyenne de l'échantillon, \(n\) est la taille de l'échantillon, et \(s\) est l'écart type de l'échantillon. La formule des degrés de liberté est \(df = n-1\).
Apprends plus vite avec les 8 fiches sur Intervalle de confiance pour la moyenne de la population
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Intervalle de confiance pour la moyenne de la population
Qu'est-ce qu'un intervalle de confiance pour la moyenne de la population?
Un intervalle de confiance est une plage de valeurs qui estime où se situe la moyenne de la population avec un certain niveau de confiance.
Comment calcule-t-on un intervalle de confiance pour la moyenne?
On calcule un intervalle de confiance en utilisant la moyenne de l'échantillon, l'écart-type, et la taille de l'échantillon, puis en appliquant une formule spécifique utilisant la distribution normale ou t.
Qu'est-ce que le niveau de confiance?
Le niveau de confiance indique la probabilité que l'intervalle contienne la véritable moyenne de la population. Il est souvent exprimé en pourcentage, par exemple 95%.
Pourquoi utilise-t-on l'intervalle de confiance?
L'intervalle de confiance est utilisé pour estimer la précision de la moyenne de l'échantillon et pour faire des inférences sur la population toute entière.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.