Estimation ponctuelle

Mobile Features AB

T'es-tu déjà demandé comment les statisticiens déterminent des paramètres tels que l'âge moyen de la population d'un pays entier ? Il est évident qu'ils ne peuvent pas obtenir les données de chaque membre de la population pour calculer cette statistique.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Estimation ponctuelle

  • Temps de lecture: 11 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:11 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:11 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Cependant, ils peuvent recueillir des données à partir de petits échantillons de la population, trouver leur moyenne et l'utiliser comme guide pour deviner le paramètre pour l'ensemble de la population. C'est ce qu'on appelle l'estimation ponctuelle.

    Cet article traite de ce qu'est l'estimation ponctuelle, des différentes méthodes d'estimation et de leurs formules. Il te présentera également quelques exemples d'estimation ponctuelle.

    Définition de l'estimation ponctuelle

    Tu devrais maintenant être familiarisé avec les concepts de population, d'échantillon, de paramètre et de statistiques. Voici un bref rappel :

    • La population est le groupe dont l'étude t'intéresse et dont les résultats sont déduits statistiquement ;

    • Un paramètre est une caractéristique de la population que tu veux étudier et qui peut être représentée numériquement ;

    • Un échantillon est un petit groupe d'éléments de la population qui t'intéresse et dont il est représentatif ;

    • Une statistique est une caractéristique de l'échantillon qui est représentée par une valeur numérique.

    Ceci étant dit, tu peux alors comprendre plus clairement le concept d'estimation ponctuelle :

    L'estimation ponctuelle consiste à utiliser des statistiques prélevées sur un ou plusieurs échantillons pour estimer la valeur d'un paramètre inconnu d'une population.

    C'est la réalité d'une étude statistique : il est presque certain que les chercheurs ne connaîtront pas les paramètres de la population à laquelle ils s'intéressent.

    D'où l'importance que l'échantillon (ou les échantillons) utilisé(s) dans une étude statistique présente(nt) le plus fidèlement possible certaines ou les principales caractéristiques de la population, c'est-à-dire que l'échantillon est représentatif.

    Formules d'estimation ponctuelle

    Différents paramètres de la population auront différents estimateurs, qui à leur tour auront différentes formules pour leur estimation. Plus loin dans l'article, tu verras les formules les plus fréquemment utilisées. Jetons un coup d'œil à la terminologie et à la notation utilisées.

    Le résultat d'une estimation ponctuelle d'un paramètre est une valeur unique, généralement appelée estimateur, et il aura généralement la même notation que le paramètre de la population qu'il représente plus un chapeau '^'.

    Dans le tableau ci-dessous, tu peux voir des exemples d'estimateurs et de paramètres ainsi que leurs notations respectives.

    Paramètre

    Notation

    Estimation ponctuelle

    Notation

    Moyenne

    \(\mu\)

    Moyenne de l'échantillon

    \(\hat{\mu}\) ou \(\bar{x}\)

    Proportion

    \(p\)

    Proportion de l'échantillon

    \(\hat{p}\)

    Variance

    \(\sigma^2\)

    Variance de l'échantillon

    \(\hat{s}^2\) ou \(s^2\)

    Tableau 1. Paramètres statistiques,

    Méthodes d'estimation ponctuelle

    Il existe plusieurs méthodes d'estimation ponctuelle, notamment la méthode du maximum de vraisemblance, la méthode des moindres carrés, l'estimateur du meilleur sans biais, entre autres.

    Toutes ces méthodes permettent de calculer des estimateurs qui respectent certaines propriétés qui donnent de la crédibilité à l'estimateur. Ces propriétés sont :

    • Cohérent: ici, tu veux que la taille de l'échantillon soit importante pour que la valeur de l'estimateur soit plus précise ;

    • Sans biais : tu t'attends à ce que les valeurs des estimateurs des échantillons que tu pourrais tirer de la population soient aussi proches que possible de la vraie valeur du paramètre de la population (une petite erreur standard).

    Les estimateurs présentés dans le tableau précédent sont sans biais par rapport aux paramètres qu'ils estiment. Pour en savoir plus sur ce sujet, lis notre article sur les estimations ponctuelles biaisées et non biaisées.

    Lorsque les deux propriétés ci-dessus sont remplies pour un estimateur, tu as l' estimateurle plus efficace ou le meilleur estimateur sans biais. Parmi tous les estimateurs cohérents et sans biais, tu devrais choisir celui qui est le plus cohérent et sans biais.

    Ensuite, tu découvriras deux estimateurs avec lesquels tu devras te familiariser, à savoir la moyenne de l'échantillon et l'estimateur de la proportion. Ce sont les meilleurs estimateurs sans biais pour leurs paramètres respectifs.

    Estimation ponctuelle de la moyenne

    Passons maintenant au premier estimateur. Il s'agit de la moyenne de l'échantillon, \(\bar{x}\), de la moyenne de la population, \(\mu\).Sa formule est la suivante

    \[\bar{x}=\frac{\sum\limits_{i=1}^{n}x_i}{n},\]

    • \N(x_i\N) sont les points de données (observations) d'un échantillon ;

    • \N(n\N) est la taille de l'échantillon.

    Comme tu l'as déjà lu, il s'agit du meilleur estimateur sans biais de la moyenne de la population. Il s'agit d'un estimateur basé sur la moyenne arithmétique.

    Voyons un exemple d'application de cette formule.

    Étant donné les valeurs ci-dessous, trouve la meilleure estimation ponctuelle de la moyenne de la population \(\mu\).

    \[7.61, 7.17, 9.06, 6.305, 7.805, 7.11, 9.705, 6.11,8.56, 7.11, 6.455, 9.06\]

    Solution :

    L'idée est simplement de calculer la moyenne de l'échantillon de ces données.

    \N- [\N- Début{align} \bar{x}&=\frac{\sum\limits_{i=1}^{n}x_i}{n} \N- &= \sum\limites_{i=1}^{n}\frac{x_i }{n} \N- &=\frac{7.61}{12} +\frac{7.17}{12}+\frac{9.06}{12}+\frac{6.305}{12}+\frac{7.805}{12} \\N- et \Nquad +\Nfrac{7.11}{12}+\Nfrac{9.705}{12}+\Nfrac{6.11}{12}+\Nfrac{8.56}{12} \\N- & \Nquad +\Nfrac{7.11}{12}+\Nfrac{6.455}{12}+\Nfrac{9.06}{12} \N- &=\frac{92.06}{12} \N- &=7.67 \Nend{align} \]

    La meilleure estimation ponctuelle de la moyenne de la population \(\mu\) est \(\bar{x}=7,67\).

    Un autre estimateur lié à la moyenne est la différence entre deux moyennes, \ ( \bar{x}_1-\bar{x}_2\) . Cet estimateur peut t'intéresser lorsque tu veux comparer la même caractéristique numérique entre deux populations, par exemple en comparant la taille moyenne de personnes vivant dans des pays différents.

    Estimation ponctuelle de la proportion

    La proportion de la population peut être estimée en divisant le nombre de succès dans l'échantillon \(x\) par la taille de l'échantillon (n). Cela peut s'exprimer comme suit :

    \[ \hat{p}=\frac{x}{n}\]

    Que signifie "nombre de succès dans l'échantillon" ?

    Lorsque tu veux calculer la proportion de la caractéristique qui t'intéresse, tu vas compter tous les éléments de l'échantillon qui contiennent cette caractéristique, et chacun de ces éléments est un succès.

    Voyons un exemple d'application de cette formule.

    Une enquête a été réalisée à partir d'un échantillon de 300 stagiaires enseignants dans une école de formation afin de déterminer quelle proportion d'entre eux considère favorablement les services qui leur sont fournis. Sur 150 stagiaires, 103 ont répondu qu'ils considéraient les services fournis par l'école comme favorables. Trouve l'estimation ponctuelle pour ces données.

    Solution :

    L'estimation ponctuelle sera ici la proportion de la population. La caractéristique qui nous intéresse est le fait que les enseignants stagiaires ont une opinion favorable des services qui leur sont fournis. Ainsi, tous les stagiaires ayant une opinion favorable sont des réussites, \(x=103\). Et \N(n = 150\N). ce qui signifie

    \[ \hat{p} = {x\ sur n} = {103\ sur 150} = 0,686.\N].

    Les chercheurs de cette enquête peuvent établir l'estimation ponctuelle, qui est la proportion de l'échantillon, à \(0,686\N) ou \N(68,7\N%).

    Un autre estimateur lié à la proportion est la différence de deux proportions, \ ( \hat{p}_1-\hat{p}_2\) . Cet estimateur peut t'intéresser lorsque tu veux comparer les proportions de deux populations, par exemple, si tu as deux pièces de monnaie et que tu soupçonnes que l'une d'entre elles est injuste parce qu'elle tombe trop souvent sur une tête.

    Exemple d'estimation par points

    Certains éléments importants sont associés à un problème d'estimation ponctuelle :

    • Desdonnées provenant de l'échantillon - après tout, pas de données, pas d'estimation ;

    • Un paramètre inconnu de la population - la valeur que tu voudras estimer ;

    • Une formule pour l'estimateur du paramètre ;

    • La valeur de l'estimateur donnée par les données/l'échantillon.

    Examine des exemples où tous ces éléments sont présents.

    Un chercheur veut estimer la proportion d'étudiants inscrits dans une université qui fréquentent la bibliothèque de leur collège respectif au moins trois fois par semaine. La chercheuse a interrogé \(200\) étudiants de la faculté des sciences qui fréquentent leur bibliothèque, \(130\) d'entre eux la fréquentant au moins \(3\) fois par semaine. Elle a également interrogé \N300 étudiants de la faculté des sciences humaines qui fréquentent leur bibliothèque, dont \N190 la fréquentent au moins \N3 fois par semaine.

    a) Trouve la proportion d'étudiants qui fréquentent la bibliothèque de la faculté des sciences au moins 3 fois par semaine.

    b) Trouve la proportion d'étudiants qui fréquentent la bibliothèque de la faculté des sciences humaines au moins 3 fois par semaine.

    c) Quel groupe d'étudiants fréquente le plus sa bibliothèque ?

    Solution :

    a) \(x=\)nombre d'étudiants de la faculté des sciences qui fréquentent leur bibliothèque au moins \(3\) fois par semaine, donc \(x=130\) ; et \(n=200.\) Pour le groupe des sciences,

    \[\hat{p}=\frac{130}{200}=0.65.\]

    b) \ (x=\)nombre d'étudiants de la faculté des sciences humaines qui fréquentent leur bibliothèque au moins \(3\) fois par semaine, donc \(x=190\) ; et \(n=300.\) Pour le groupe des sciences humaines,

    \[\hat{p}=\frac{190}{300}=0.63.\]

    c) La proportion d'étudiants en sciences qui fréquentent leur bibliothèque est plus importante que la proportion d'étudiants en lettres qui fréquentent leur bibliothèque. D'après ces informations, tu peux dire que ce sont davantage les étudiants en sciences qui fréquentent leur bibliothèque.

    Estimation par points et estimation par intervalles

    Comme tu l'as peut-être compris après avoir lu cet article, l'estimation ponctuelle te donne une valeur numérique qui est une approximation du paramètre de la population que tu aimerais en fait connaître.

    Mais l'inconvénient de cette méthode d'estimation est que tu ne sais pas à quel point l'estimateur est proche ou éloigné de la vraie valeur du paramètre. Et c'est là qu'intervient l'estimation par intervalle, qui va prendre en compte ce qu'on appelle la marge d'erreur, cette information qui te permet d'apprécier la distance de l'estimateur par rapport au paramètre.

    Comme tu peux l'imaginer, il est dans ton intérêt que les valeurs estimées des paramètres soient aussi proches que possible des vraies valeurs des paramètres, car cela rend les déductions statistiques plus crédibles.

    Tu peux en savoir plus sur l'estimation par intervalle dans l'article Intervalles de confiance.

    Estimation ponctuelle - Principaux enseignements

    • L'estimation ponctuelle consiste à utiliser des statistiques tirées d'un ou plusieurs échantillons pour estimer la valeur d'un paramètre inconnu d'une population.
    • Les deux propriétés importantes des estimateurs sont les suivantes
      • Cohérent : plus la taille de l'échantillon est importante, plus la valeur de l'estimateur est précise ;

      • Sans biais : tu t'attends à ce que les valeurs des estimateurs des échantillons soient aussi proches que possible de la vraie valeur du paramètre de la population.

    • Lorsque ces deux propriétés sont remplies pour un estimateur, tu as le meilleur estimateur sans biais.

    • L'estimateur sans biais de la moyenne de la population \(\mu\) est la moyenne de l'échantillon \(\bar{x}\) avec la formule\[\bar{x}=\frac{\sum\limites_{i=1}^{n}x_i}{n}.\N].

    • Le meilleur estimateur sans biais de la proportion de la population \(\mu\) est la proportion de l'échantillon \(\hat{p}\) avec la formule \[\hat{p}=\frac{x}{n}.\].

    • L'inconvénient de l'estimation ponctuelle est que tu ne sais pas à quel point l'estimateur est proche ou éloigné de la vraie valeur du paramètre, c'est alors que l'estimateur par intervalles est utile.

    Questions fréquemment posées en Estimation ponctuelle
    Qu'est-ce que l'estimation ponctuelle en mathématiques?
    L'estimation ponctuelle est une méthode pour estimer un paramètre inconnu d'une population à partir d'un échantillon, utilisant une seule valeur (appelée estimateur).
    Quelle est la différence entre estimation ponctuelle et estimation par intervalle?
    L'estimation ponctuelle utilise une seule valeur pour estimer un paramètre, tandis que l'estimation par intervalle fournit une plage de valeurs plausibles.
    Quels sont les critères pour un bon estimateur ponctuel?
    Un bon estimateur doit être sans biais, efficient, et consistant.
    Quels sont des exemples courants d'estimateurs ponctuels?
    Des exemples incluent la moyenne, la médiane et la variance de l'échantillon.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Qu'est-ce qu'un estimateur ?

    Si la valeur attendue du paramètre est égale au paramètre, quelle affirmation est vraie ?

    Qu'est-ce qui est vrai à propos de la fonction de ressemblance maximale ?

    Suivant
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 11 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !