Pourquoi utilisons-nous la distribution normale standard ?
Les distributions normales standard sont utiles parce que leur moyenne est 0 et leur écart-type est 1. Il est donc facile de calculer des inconnues et les probabilités que certaines valeurs se produisent ou de comparer efficacement des ensembles de données entre eux en se basant sur les moyennes et les écarts par défaut.
L'équation de la fonction de densité de probabilité (pdf) d'une distribution normale standard est la suivante
\[ \phi(z)=\frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{z^2}{2} \right}. \]
Standard
distribution normale
Le graphique a un axe de symétrie vertical \N( x=0 \N), et à la fois une variance et un écart type de 1 lorsque \N( z=-1 \N) et pour \N( z=1 \N), en d'autres termes, lorsque le score x brut est plus de 3 écarts types de la moyenne, \N( \Nphi(z) \Nsim 0 \N).
Une valeur z, un score z ou un score standard (utilisés de manière interchangeable) décrit la position d'un score spécifique en termes de distance par rapport à la moyenne, et est mesuré en unités d'écart type. Les scores Z sont positifs lorsque la valeur se situe au-dessus de la moyenne, et négatifs si elle se situe en dessous.
Quelle est la formule de la distribution normale standard ?
Une distribution normale a la formule suivante .
Une distribution normale standard a la formule .
Nous pouvons convertir une variable normale X en une variable normale standard Z. Si l'équation peut être utilisée, ce qui permet de convertir un score X en un score Z. Cette formule est dérivée d'une technique de changement de variable d'une fonction de densité de probabilité modélisant une distribution normale.
La notation est équivalente à la notation et peut être interchangée lorsqu'on se réfère à une distribution normale standard.
Une variable est distribuée au hasard . Ecris en termes de pour une certaine valeur de z.
Puisque la distribution normale est continue, .
Nous savons que la somme des probabilités dans une distribution normale est égale à 1, donc . Nous convertissons ensuite cette distribution en une distribution normale standard.
Nous remplaçons les valeurs connues dans la formule .
Par conséquent ,
D'où,
Enfin,
Ceci est en termes de et répond donc à la question.
On peut aussi te demander de trouver la probabilité qu'une variable se trouve dans un intervalle donné.
Étant donné que trouve correct à 3 chiffres significatifs.
Commençons par dessiner un graphique :
Graphique de la distribution normale avec les zones ombrées
Ensuite, nous allons convertir les notes x en notes z.
Quand
Quand
La surface à droite de z=0 est :
La surface à gauche de z=0 est: :
Nous additionnons ensuite les 2 aires
à 3 chiffres significatifs
L'exemple ci-dessous illustre comment la distribution normale standard peut être utilisée pour comparer des ensembles de données de la vie réelle.
Une élève obtient 73 % à son examen d'anglais, alors que la moyenne de la classe est de 68 % et l'écart type de 10,2 %. En biologie, elle a obtenu 66 %, alors que la moyenne de la classe était de 62 % et l'écart type de 6,8 %.
Dans quelle matière a-t-elle obtenu de meilleurs résultats que le reste de sa classe ?
Suppose que les notes des deux matières sont normalement distribuées.
Pour pouvoir comparer efficacement les notes des élèves, il faut les standardiser.
Score z en anglais :
Score z en biologie :
Interprétation - Le score z de l'élève détermine le nombre d'écarts-types entre sa note et la moyenne de la classe, dans les deux cas, au-dessus de la moyenne.
Plus la note z est élevée, plus sa note est éloignée de la moyenne et plus ses résultats sont bons par rapport au reste de la classe.
L'élève a obtenu les meilleurs résultats en biologie.
Trouver la moyenne d'une distribution normale standard
La distribution normale standard peut être utilisée pour résoudre une moyenne inconnue, une valeur d'écart type ou une variance d'une distribution normale. La moyenne d'une distribution normale standard est 0. Lorsque la note x est convertie en note z, les inconnues deviennent plus faciles à calculer. Une calculatrice graphique avec une fonction normale inverse est souvent nécessaire pour ces questions. Les questions peuvent demander de trouver une inconnue à partir d'une probabilité ou deux inconnues à partir de deux probabilités. Voyons des exemples pour les deux types de questions.
On sait que le poids des colliers faits main dans un magasin est normalement distribué avec un écart type de 5,9g. Si 15 % des colliers pèsent moins de 58,2 g, trouve le poids moyen des colliers.
Soit µ le poids moyen des colliers. L'information donnée peut donc être écrite sous la forme suivante
De plus ,
Nous allons maintenant convertir ce score x en score z.
Nous utilisons maintenant la fonction normale inverse sur la calculatrice, pour N(0, 1²) et la probabilité=0,15.
Résous ensuite la question de µ.
Le poids moyen des colliers est d'environ 64,3 g.
Dans cet exemple, les deux paramètres sont manquants.
La variable aléatoire . Étant donné que , et , trouve la valeur de µ et de σ.
Pour résoudre cette question, il est nécessaire de convertir les notes x en notes z, puis de résoudre les deux équations simultanément.
En utilisant la fonction normale inverse pour les deux probabilités, on obtient :
autre
Nous résolvons ensuite ces deux équations simultanément. Cela peut se faire à la main ou à l'aide du résolveur d'équations simultanées de la calculatrice.
Nous obtenons : et à 3 chiffres significatifs.
En utilisant le tableau de distribution normale standard
Lorsque z est normalement distribué avec une moyenne de 0 et un écart type de 1 (distribution normale standard), il existe un tableau qui peut être utilisé à la place de la calculatrice. Il donne la valeur de où . Pour les valeurs négatives de z, tu utilises . Tu trouveras ce tableau dans les brochures et les manuels de statistiques.
Distribution normale standard - Points clés à retenir
- Une distribution normale standard est définie comme ayant une moyenne de 0 et un écart-type de 1.
- Si cette distribution normale peut être standardisée en convertissant les notes x en notes z à l'aide de :.
- La notation est équivalente à
- L'aire sous le graphique est égale à 1.
- Les distributions normales standard peuvent être utilisées pour calculer des valeurs inconnues (moyenne ou écart type). Deux probabilités sont nécessaires si les deux valeurs sont inconnues.
- Deux ensembles de données ayant des moyennes et des écarts types différents peuvent être directement comparés lorsqu'ils sont normalisés.
(explication) fr-statistiques-distributions-distribution de probabilité-distribution normale standard-pourquoi une distribution normale standard ?