Coefficient de Correlation de Rang de Spearman

Mobile Features AB

Supposons que ton ami et toi ayez décidé de faire votre propre test de dégustation de soda. Vous achetez \(10\) différentes marques de soda, et vous les goûtez chacun, en les classant du meilleur au pire. Et si vous donniez tous les deux des notes différentes à certains sodas ? Comment saurais-tu si ton ami et toi avez donné à peu près les mêmes notes, même si vous n'avez pas donné exactement les mêmes notes ? C'est ce que le coefficient de corrélationa> de rang de Spearman peut te dire !

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu as des données classées et que tu veux comparer les classements, tu utiliseras le coefficient de corrélation ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu penses que deux ensembles de données sont liés mais pas de façon linéaire, tu utiliseras le coefficient de corrélation ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu penses que tes données peuvent être liées linéairement, tu utiliseras le coefficient de corrélation ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si deux séries de classements sont en parfait accord, le coefficient de corrélation du rang de Spearman sera ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si deux séries de classements n'ont aucune relation, le coefficient de corrélation du rang de Spearman sera ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si deux séries de classements sont dans l'ordre exactement inverse, le coefficient de corrélation du rang de Spearman sera ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si deux séries de classements sont presque identiques, tu t'attends à ce que le coefficient de corrélation des rangs de Spearman soit ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose qu'il y ait plusieurs éléments dont les rangs sont à égalité. Quel rang utiliserais-tu pour calculer le coefficient de corrélation de rang de Spearman ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'une des façons de réduire la marge d'erreur lors de l'utilisation du coefficient de corrélation de Spearman ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Si deux personnes donnent le même rang à un élément, on considère qu'il y a égalité de rang lorsqu'on trouve le coefficient de corrélation de rang de Spearman.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Lorsqu'il y a deux classements ex aequo ou moins, les deux formules pour le coefficient de corrélation de rang de Spearman sont les suivantes\[ \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}} \]et \[ 1 - \frac{6}{n(n^2-1)} \sum d^2 \]donnent exactement la même valeur.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu as des données classées et que tu veux comparer les classements, tu utiliseras le coefficient de corrélation ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu penses que deux ensembles de données sont liés mais pas de façon linéaire, tu utiliseras le coefficient de corrélation ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu penses que tes données peuvent être liées linéairement, tu utiliseras le coefficient de corrélation ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si deux séries de classements sont en parfait accord, le coefficient de corrélation du rang de Spearman sera ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si deux séries de classements n'ont aucune relation, le coefficient de corrélation du rang de Spearman sera ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si deux séries de classements sont dans l'ordre exactement inverse, le coefficient de corrélation du rang de Spearman sera ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si deux séries de classements sont presque identiques, tu t'attends à ce que le coefficient de corrélation des rangs de Spearman soit ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose qu'il y ait plusieurs éléments dont les rangs sont à égalité. Quel rang utiliserais-tu pour calculer le coefficient de corrélation de rang de Spearman ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'une des façons de réduire la marge d'erreur lors de l'utilisation du coefficient de corrélation de Spearman ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Si deux personnes donnent le même rang à un élément, on considère qu'il y a égalité de rang lorsqu'on trouve le coefficient de corrélation de rang de Spearman.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Lorsqu'il y a deux classements ex aequo ou moins, les deux formules pour le coefficient de corrélation de rang de Spearman sont les suivantes\[ \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}} \]et \[ 1 - \frac{6}{n(n^2-1)} \sum d^2 \]donnent exactement la même valeur.

Afficer la réponse

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Coefficient de Correlation de Rang de Spearman

  • Temps de lecture: 12 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:12 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:12 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Définition du coefficient de corrélation de rang de Spearman

    Rappelle qu'un coefficient de corrélation du moment du produit (CCPM) est utilisé pour mesurer une corrélation linéaire entre deux variables.

    Consulte les articles Corrélation et Coefficient de corrélation du moment du produit pour plus de détails.

    Mais que se passe-t-il si tes données ne sont pas linéairement corrélées, ou ne peuvent même pas être mesurées sur une échelle continue ? Dans ce cas, tu peux utiliser le coefficient de corrélation de rang de Spearman. En fait, tu peux utiliser le coefficient de corrélation de rang de Spearman comme approximation du coefficient de corrélation du moment produit même si les données sont linéairement corrélées, simplement parce que le coefficient de corrélation de rang de Spearman est plus simple à calculer.

    Pour plus de détails, voir Comparaison du coefficient de corrélation de rang de Spearman et du coefficient de corrélation du moment du produit.

    En général, tu utiliseras le coefficient de corrélation de rang de Spearman si :

    • l'un ou les deux ensembles de données proviennent d'une population qui n'est pas normalement distribuée ;

    • la relation entre les ensembles de données n'est pas linéaire ; ou

    • l'un ou les deux ensembles de données sont déjà représentés sous forme de classement.

    Les valeurs du coefficient de corrélation de rang de Spearman sont comprises entre \(-1\) et \(1\).

    Un coefficient de corrélation de rang de Spearman de :

    • \(1\) signifie que les classements sont en parfait accord ;
    • \(0\) signifie qu'il n'y a pas de relation entre les classements ; et
    • \(-1\) signifie que les classements sont en ordre inverse.

    Souvent, le coefficient de corrélation de Spearman n'est pas exactement égal à \(1\), \(0\) ou \(-1\). En général, lorsque tu effectues un test d'hypothèse à l'aide du coefficient de corrélation de rang de Spearman, tu vérifies s'il existe ou non une relation entre les classements.

    Voir Test de corrélation nulle pour plus de détails sur ce type de test d'hypothèse.

    Graphique des rangs de Spearman

    Lorsque tu cherches à déterminer s'il existe une corrélation en utilisant le rang de Spearman, il peut être utile de représenter les données sous forme de graphique. Rappelle-toi que tu ne cherches pas à voir si les données du graphique forment une ligne, tu cherches à voir si les classements sont les mêmes.

    Dans le graphique ci-dessous, tu peux voir les classements que deux juges ont donnés lors d'une compétition. Les classements que le juge A a donnés aux concurrents sont notés par des cercles, tandis que les classements que le juge B a donnés sont notés par des croix.

    Graphique du coefficient de corrélation de rang de Spearman des classements donnés par deux juges StudySmarterFig. 1 - Graphique des classements donnés par deux juges différents.

    Par exemple, le juge A a attribué au premier concurrent une note de 1, tandis que le juge B lui a attribué une note de 2. Bien que les données représentées ne forment pas une ligne, il apparaît que les deux juges ont donné à peu près la même note à tous les concurrents, et dans trois cas, ils ont donné exactement la même note. On peut donc s'attendre à ce que le coefficient de corrélation de Spearman pour les classements soit plus proche de \(1\) que de \(0\).

    Formule du coefficient de corrélation de rang de Spearman

    Pour utiliser la formule du coefficient de corrélation de rang de Spearman, il faut classer les ensembles de données. La façon dont tu les classes n'a pas d'importance (par exemple, du meilleur au pire ou du pire au meilleur) tant que tu classes les deux ensembles de la même façon. Avant d'examiner la formule, voyons un exemple d'organisation des classements.

    On a demandé à deux dégustateurs de café de classer \(8\) marques de café par ordre de préférence. Leur ordre de préférence pour les marques est indiqué dans le tableau ci-dessous.

    Tableau 1. Préférences des dégustateurs en matière de café.

    Marque de caféABCDEFGH
    Goûter \N(x\N)\(4\)\(5\)\(2\)\(8\)\(1\)\(3\)\(7\)\(6\)
    Dégustateur \N-(y\N-)\N-(y\N)\(4\)\(6\)\(1\)\(7\)\(3\)\(2\)\(5\)\(8\)

    Le dégustateur attribue un numéro de préférence à chaque café. Tant que le dégustateur \(x\) et le dégustateur \(y\) utilisent tous deux \(1\) pour signifier la même chose sur l'échelle, tu pourras comparer les classements. Si tu ne sais pas que le dégustateur \N(x) et le dégustateur \N(y) ont utilisé \N(1) pour désigner le café qu'ils préfèrent le plus, tu ne pourras pas dire ce que signifie le coefficient de corrélation, même si tu pourras le calculer.

    Pour calculer le coefficient de corrélation, tu auras besoin des valeurs suivantes :

    \[ S_{xy} = \sum x_iy_i - \frac{1}{n}\sum x_i \sum y_i ; \]

    \[ S_{xx} = \sum x_i^2 - \frac{1}{n} \left(\sum x_i\right)^2;\]

    et

    \[S_{yy} = \sum y_i^2 - \frac{1}{n} \left(\sum y_i\right)^2.\N- \N- \N- \N- \N- \N- \N- \N- \N- \N].

    Le coefficient de corrélation de rang de Spearman peut alors être trouvé à l'aide de la formule suivante

    \[ r_s = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} .\]

    Tu peux trouver un exemple où le même score est donné à plus d'un point de données. C'est ce qu'on appelle un classement ex æquo.

    Il y a égalité de rang lorsque deux ou plusieurs valeurs de données dans l'un des ensembles de données sont identiques.

    Prenons un petit exemple.

    Supposons qu'on ait demandé à un dégustateur de café d'attribuer au café une note alphabétique en fonction de son degré d'appréciation. Pour les cafés qu'ils ont goûtés, ils ont donné des notes de : A, C, F, D, B, C, C, C. Remarque que sur les huit cafés listés, trois d'entre eux ont une note de C ! Ainsi, si tu essayais de faire un tableau de classement, tu obtiendrais :

    Tableau 2. Tableau de classement possible

    Rang\(1\)\(2\)\(7\)\(8\)
    GradeABCCCCDF

    Mais que fais-tu des quatre cafés qui ont obtenu chacun un C ? Tu leur donnes un rang de 3, 4, 5 ou 6 ? Il s'avère que tu leur donnes la moyenne des notes puisqu'ils sont à égalité. En trouvant la moyenne, tu obtiens

    \N[ \Nfrac{3+4+5+6}{4} = 4,5,\N]

    chacun sera donc classé \(4,5\). Le tableau de classement complété serait le suivant :

    Tableau 3. Tableau de classement complet

    Rang\(1\)\(2\)\(4.5\)\(4.5\)\(4.5\)\(4.5\)\(7\)\(8\)
    GradeABCCCCDF

    Remarque que dans l'exemple précédent, tu ne compares pas les rangs du goûteur \(x\N) aux rangs du goûteur \N(y\N). Tu ne fais que comparer les rangs donnés par un seul goûteur.

    S'il y a plus de deux rangs ex aequo, la formule suivante s'applique

    \[ r_s = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}} \]

    doit être utilisée. Cependant, s'il y a deux rangs égaux ou moins, tu peux utiliser la formule suivante :

    \[ r_s = 1 - \frac{6}{n(n^2-1)} \sum d^2,\]

    où \(n\N) est le nombre de paires d'observations et \N(d\N) est la différence entre les rangs de chaque observation. La formule de différence te donnera une bonne approximation du coefficient de corrélation des rangs de Spearman tant qu'il n'y a pas d'égalité des rangs.

    Tableau des rangs de Spearman

    Une fois que tu connais le coefficient de corrélation de rang de Spearman, tu l'utiliseras souvent pour effectuer un test d'hypothèse. Bien que tu puisses utiliser la technologie pour trouver la valeur critique, il est utile de pouvoir lire un tableau de rangs de Spearman. Tu trouveras ci-dessous une section d'un tableau de rangs de Spearman.

    Tableau 4. Tableau des rangs de Spearman

    \N(n\N)/\N(\Nalpha \N)

    \(0.1\)

    \(0.05\)

    \(0.25\)

    \(0.01\)

    \(6\)

    \(0.657\)

    \(0.829\)

    \(0.886\)

    \(0.943\)

    \(7\)

    \(0.571\)

    \(0.714\)

    \(0.786\)

    \(0.893\)

    \(8\)

    \(0.524\)

    \(0.643\)

    \(0.738\)

    \(0.833\)

    La première colonne du tableau est la taille de l'échantillon \(n\), et la première ligne du tableau te donne le niveau de confiance. Remarque qu'à mesure que la taille de l'échantillon augmente, la valeur critique pour un niveau de confiance donné diminue. Rappelle-toi que la marge d'erreur dépend de la valeur critique :

    marge d'erreur = (valeur critique)(erreur standard).

    Cela signifie que si tu augmentes la taille de l'échantillon, la marge d'erreur diminuera.

    Valeur critique du coefficient de corrélation de rang de Spearman

    La valeur critique du coefficient de corrélation de rang de Spearman dépend de la taille de l'échantillon et du niveau de confiance que tu utilises. La valeur critique peut être trouvée à l'aide d'un tableau ou d'un logiciel statistique. Par exemple, si tu effectues un test unilatéral, avec une taille d'échantillon de \(7\), au niveau de confiance \(0,25\), tu utiliseras un tableau des coefficients de Spearman pour voir que la valeur critique est \(0,786\). Tu trouveras cette valeur critique dans le tableau ci-dessus.

    En d'autres termes, pour un échantillon de \(7\), la valeur critique de \(r_s\) est significative au niveau \(0,25\) sur un test unilatéral à \(\pm 0,786\).

    Exemple de coefficient de corrélation de rang de Spearman

    Revenons à l'exemple du café et déterminons ce qu'est le coefficient de corrélation.

    On a demandé à deux dégustateurs de café de classer huit marques de café par ordre de préférence, \(1\) étant le café qu'ils préfèrent. L'ordre de leurs préférences pour les marques est indiqué dans le tableau ci-dessous.

    Tableau 5. Préférences des dégustateurs en matière de café.

    Marque de caféABCDEFGH
    Goûter \N(x\N)\(4\)\(5\)\(2\)\(8\)\(1\)\(3\)\(7\)\(6\)
    Dégustateur \N-(y\N-)\N-(y\N)\(4\)\(6\)\(1\)\(7\)\(3\)\(2\)\(5\)\(8\)

    Trouve et interprète le coefficient de corrélation de rang de Spearman.

    Solution :

    Remarque que même si les deux dégustateurs ont classé le café A comme leur quatrième choix, il ne s'agit pas d'un exemple d'égalité de rang. Il y aurait égalité de rangs si un dégustateur donnait le même rang à deux cafés. Il est donc raisonnable d'utiliser la formule simplifiée

    \[ r_s = 1 - \frac{6}{n(n^2-1)} \sum d^2 .\]

    Ici, il y a huit marques de café, donc \N(n=8\N). Considère d'abord la somme,

    \N- [\N- Début{align} \sum\limites_{i=1}^8 d_i^2 &= (4-4)^2 + (5-6)^2 + (2-1)^2 + (8-7)^2 \N & \Nquad + (1-3)^2 + (3-2)^2 + (7-5)^2 + (6-8)^2 \N &= 0+1+1+1+4+1+4+4 \N &= 16. \N- [end{align}\N]

    Alors

    \N-[\N-[\N-]r_s &= 1 - \Nfrac{6}{n(n^2-1)} \Nsum d^2 \N-[\N-]1-\frac{6}{8(8^2-1)}(16) \N-[\N-]1-\frac{6}{8(63)}(16) \N-[\N-]\N-[\N-]approximativement 0,81. \N- [end{align}\N]

    Puisque \(r_s \not= 0\), tu ne peux pas dire qu'il n'y a pas de relation entre les classements. Cependant, comme il est proche de zéro, tu peux dire qu'il y a très peu de corrélation entre les classements des deux dégustateurs.

    Coefficient de corrélation des rangs de Spearman - Principaux enseignements

    • Utilise le coefficient de corrélation de rang de Spearman si :
      • l'un ou les deux ensembles de données proviennent d'une population qui n'est pas normalement distribuée ;

      • la relation entre les ensembles de données n'est pas linéaire ; ou

      • l'un des ensembles de données ou les deux sont déjà représentés sous forme de classement.

    • Un coefficient de corrélation de rang de Spearman de :

      • \(1\) signifie que les classements sont en parfait accord ;
      • \(0\) signifie qu'il n'y a pas de relation entre les classements ; et
      • \(-1\) signifie que les classements sont dans l'ordre inverse.
    • Un classement ex æquo se produit lorsque deux ou plusieurs valeurs de données dans l'un des ensembles de données sont identiques.
    • S'il y a deux rangs égaux ou moins, tu peux utiliser la formule :

      \[ r_s = 1 - \frac{6}{n(n^2-1)} \sum d^2,\]

      pour calculer approximativement le coefficient de corrélation des rangs de Spearman, où \(n\) est le nombre de paires d'observations et \(d\) est la différence entre les rangs de chaque observation.

    Questions fréquemment posées en Coefficient de Correlation de Rang de Spearman
    Qu'est-ce que le coefficient de corrélation de rang de Spearman?
    Le coefficient de corrélation de rang de Spearman est une mesure statistique qui évalue la relation entre deux variables ordinales en utilisant les rangs des données.
    Comment calcule-t-on le coefficient de corrélation de rang de Spearman?
    Pour calculer le coefficient de Spearman, convertissez les données en rangs, utilisez la formule spécifique (1 - (6 * somme des carrés des différences des rangs) / n(n^2 - 1)).
    À quoi sert le coefficient de corrélation de rang de Spearman?
    Il sert à déterminer la force et la direction de la relation monotone entre deux variables ordinales ou continues.
    Quelle est l'interprétation des valeurs du coefficient de corrélation de rang de Spearman?
    Les valeurs vont de -1 à 1; 1 signifie une corrélation positive parfaite, -1 une corrélation négative parfaite, et 0 aucune corrélation.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Si tu as des données classées et que tu veux comparer les classements, tu utiliseras le coefficient de corrélation ____.

    Si tu penses que deux ensembles de données sont liés mais pas de façon linéaire, tu utiliseras le coefficient de corrélation ____.

    Si tu penses que tes données peuvent être liées linéairement, tu utiliseras le coefficient de corrélation ____.

    Suivant
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 12 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !