Statistiques et probabilités

Mobile Features AB

Les statistiques et probabilités sont des outils essentiels pour comprendre le monde qui nous entoure. En mathématiques, elles permettent de modéliser et d'analyser les données afin de prendre des décisions rationnelles. Tu apprendras à collecter, organiser et analyser des données, ainsi qu'à calculer des probabilités. 

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

On lance deux fois un dé à six faces et on additionne les valeurs. À l'aide d'un arbre de probabilités, détermine la probabilité d'obtenir un sept.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les hauteurs dans un histogrammes représentent toujours les effectifs. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les hauteurs dans un histogrammes représentent toujours les fréquences. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Dans des situations qui requièrent plus de précision mathématique, il faut assurer que l'aire de chaque rectangle soit proportionnelle à l'effectif de la classe. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

En pratique, les histogrammes sont construits à l'aide d'un tableur.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les classes d'un histogramme doivent être de même amplitude.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nous pouvons également noter des valeurs aberrantes sur un diagramme en boîte. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lesquels sont des indicateurs de dispersion ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Il y a différentes façons d'exprimer une proportion. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour convertir un nombre décimal en pourcentage, il faut multiplier par 100.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si le taux d'évolution est positif, qu'est-ce que nous pouvons en déduire ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

On lance deux fois un dé à six faces et on additionne les valeurs. À l'aide d'un arbre de probabilités, détermine la probabilité d'obtenir un sept.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les hauteurs dans un histogrammes représentent toujours les effectifs. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les hauteurs dans un histogrammes représentent toujours les fréquences. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Dans des situations qui requièrent plus de précision mathématique, il faut assurer que l'aire de chaque rectangle soit proportionnelle à l'effectif de la classe. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

En pratique, les histogrammes sont construits à l'aide d'un tableur.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les classes d'un histogramme doivent être de même amplitude.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nous pouvons également noter des valeurs aberrantes sur un diagramme en boîte. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lesquels sont des indicateurs de dispersion ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Il y a différentes façons d'exprimer une proportion. 

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour convertir un nombre décimal en pourcentage, il faut multiplier par 100.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si le taux d'évolution est positif, qu'est-ce que nous pouvons en déduire ?

Afficer la réponse

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Statistiques et probabilités

  • Temps de lecture: 13 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • Last Updated: 07.10.2022
  • reading time:13 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 07.10.2022
  • reading time:13 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Les statistiques sont l'étude des données collectées à partir d'une population. Elles permettent de décrire les caractéristiques de cette population et de faire des prédictions sur son comportement futur.

    Les probabilités sont une branche des mathématiques qui étudie la fréquence avec laquelle un certain événement se produit. Les probabilités peuvent être exprimées sous forme de nombres décimaux compris entre 0 et 1, où 0 signifie qu'un événement ne se produira jamais, et 1 signifie qu'il se produira certainement.

    Par exemple, si tu lances un dé à six faces, la probabilité d'obtenir un 6 est de 1/6. Cela signifie que, sur six lancers du dé, tu obtiendras probablement un 6 environ une fois. Si tu augmentes le nombre de lancers du dé à 60, la probabilité d'obtenir un 6 sera toujours de 1/6, mais tu obtiendras probablement un 6 environ 10 fois.

    Les statistiques et probabilités sont des outils puissants qui peuvent être utilisés pour étudier et comprendre de nombreux phénomènes naturels et sociaux. Elles offrent aux élèves une excellente introduction à la pensée statistique et probabiliste, qui leur sera extrêmement utile dans leur vie future.

    Statistiques descriptives

    Les statistiques descriptives sont une partie importante des mathématiques. La moyenne, la médiane, le mode, l'étendue et les quartiles sont quelques concepts clés que tu devras maîtriser.

    La moyenne

    La moyenne est le nombre central d'un ensemble de données. Pour trouver la moyenne, on additionne tous les nombres de notre ensemble de données, puis on divise par le nombre d'éléments dans cet ensemble.

    Quelle est la moyenne de cette série de nombres?
    1355888910

    Moyenne = 1 + 3 + 5 + 5 + 8 + 8 + 8 + 9 + 10 9 = 6,33

    La médiane

    La médiane est le nombre qui partage un ensemble de données en deux parties de même taille lorsque tous les éléments de ce dernier sont ordonnés par ordre croissant ou décroissant. Pour trouver la médiane, on ordonne les données puis on prend le nombre au milieu. Si l'ensemble a un nombre pair d'éléments, on prend la moyenne des deux nombres centraux.

    Quelle est la médiane de cette série de nombres?
    1355888910

    Il y a 4 valeurs inférieures à 8 et 4 valeurs supérieures à 8. La médiane est donc le premier 8 de la série.

    Médiane = 8

    Le mode

    La valeur la plus fréquente dans un ensemble de données

    Quelle est le mode de cette série de nombres?
    1355888910

    La nombre 8 apparaît 3 fois, plus fréquemment que tous les autres nombres, donc 8 est le mode.

    L'étendue

    L'étendue est la différence entre le plus grand et le plus petit élément dans un ensemble de données. Pour trouver l'étendue, on ordonne les données puis on soustrait le plus petit nombre au plus grand.

    Quelle est l'étendue de cette série de nombres?
    1355888910

    Valeur maximale = 10

    Valeur minimale = 1

    L'étendue est donc 10 - 1 = 9.

    Les quartiles

    Les quartiles sont des mesures qui divisent un ensemble de données en quatre parties égales. Le premier quartile correspond au 25e centile, c'est-à-dire que 25% des données sont inférieures ou égales à ce nombre. Le deuxième quartile, ou médiane, correspond au 50e centile et sépare les données en deux parts égales. Le troisième quartile correspond au 75e, c'est-à-dire que 75% des données sont inférieures ou égales à ce nombre. Pour trouver les quartiles, on ordonne les données et on les divise en quatre parties égales.

    Trouver Q1 et Q3 :


    1355888910

    N=9

    94=2,25

    Afin de trouver la plus petite valeur telle que 25% des données sont inférieures ou égales à Q1, on arrondit 2.25 à l'entier supérieur, c'est-à-dire 3.

    Q1 correspond alors à la 3ème valeur de la liste, c'est-à-dire 5.

    Pour Q3 :

    3×94=6,75

    Afin de trouver la plus petite valeur telle que 75% des données sont inférieures ou égales à Q3, on arrondit 6,75 à l'entier supérieur, c'est-à-dire 7.

    Q3 correspond alors à la 7ème valeur de la liste, c'est-à-dire 8.

    Statistiques inférentielles

    Les statistiques inférentielles, également appelées déductives, sont une branche des statistiques qui est principalement utilisée pour faire des prédictions et des inférences à partir de données. Les principaux outils utilisés en inférence statistique sont les tests d'hypothèses et l'analyse de régression.

    Les tests d'hypothèses sont des outils utilisés pour déterminer si une différence observée entre deux groupes est significative ou si elle peut être attribuée au hasard.

    L'analyse de régression est un outil utilisé pour modéliser les relations entre plusieurs variables.

    Les applications des statistiques inférentielles sont vastes. En général, les statistiques inférentielles sont essentielles pour toute personne qui cherche à faire des prédictions ou des inférences à partir de données.

    Calculer des probabilités

    Il est important de savoir comment calculer des probabilités en mathématiques, car cela peut t'aider à mieux comprendre les concepts statistiques. Il existe différentes façons de calculer la probabilité d'un événement et il est important de comprendre comment elles fonctionnent.

    Une probabilité peut être exprimée sous forme de fraction, pourcentage ou nombre décimal. La probabilité est toujours un nombre compris entre 0 et 1. Si la probabilité d'un événement est de 0, cela signifie que l'événement ne se produira jamais. Si la probabilité d'un événement est de 1, cela signifie que l'événement se produira toujours.

    La probabilité d'un événement peut également être exprimée sous forme de pourcentage. Pour calculer la probabilité sous forme de pourcentage, il suffit de multiplier la probabilité de l'événement par 100. Par exemple, si la probabilité d'un événement est de 0,5, son pourcentage sera de 50 %.

    Il existe différentes façons de calculer la probabilité d'un événement. La méthode la plus simple est le calcul de la probabilité à l'aide de la formule suivante:

    P(E) = nombre d'événements favorables / nombre total d'événements

    Par exemple, si tu veux calculer la probabilité de tirer un as à partir d'un jeu de 52 cartes, il y a 4 as et 52 cartes au total. La probabilité de tirer un as est donc de 4/52. Cela peut être exprimé sous forme de pourcentage en multipliant par 100. La probabilité de tirer un as à partir d'un jeu de 52 cartes est donc d'environ 8 %.

    La probabilité peut aussi être calculée en utilisant la formule des probabilités totales. Cette méthode est utile lorsque vous essayez de calculer la probabilité d'un événement qui peut se produire de plusieurs manières différentes.

    Pour calculer la probabilité totale d'un événement, tu dois additionner les probabilités de tous les événements favorables. Par exemple, si tu veux calculer la probabilité de tirer un as ou un 2 à partir d'un jeu de 52 cartes, il y a quatre as et quatre 2. La probabilité totale de tirer un as ou un 2 est donc de 4/52 + 4/52, ce qui vaut 8/52 soit environ 15 %.

    Une probabilité peut également être calculée en utilisant la formule des probabilités conditionnelles. Cette méthode est utile lorsque vous essayez de calculer la probabilité d'un événement qui est conditionné par un autre événement.

    La probabilité conditionnelle peut être définie comme la probabilité qu'un événement B se produise étant donné qu'un événement A s'est déjà produit. Cela signifie que l'événement B dépend de l'événement A, ou que l'événement A est une condition pour que l'événement B se produise.

    Calculons la probabilité de tirer un as à partir d'un jeu de 52 cartes, sachant qu'un 2 a déjà été tiré. Il y a 4 as, et il reste 51 cartes au total. Donc, la probabilité de tirer un as à partir d'un jeu de 52 cartes sachant que la première carte tirée est un 2 est donc de 4/51 ou 8 %.

    Ce sont quelques-unes des façons de calculer la probabilité d'un événement. Il est important de comprendre comment fonctionnent ces différentes méthodes afin de pouvoir les utiliser au bon moment et de manière appropriée.

    Diagramme de Venn

    Les diagrammes de Venn sont très utiles pour résoudre des problèmes de probabilité car ils t'aident à représenter les événements visuellement. Un rectangle est utilisé pour représenter l'espace d'échantillonnage (S), et à l'intérieur du rectangle, tu peux dessiner des formes ovales représentant chaque événement. Tu peux également inclure les fréquences ou les probabilités de chaque événement dans le diagramme. Voyons les scénarios les plus courants que tu peux représenter avec des diagrammes de Venn pour deux événements, A et B :

    1. Événement A et B : Dans ce cas, les deux événements A et B se produisent simultanément, ce qui est représenté par l'intersection des deux ovales.

    Statistiques et probabilités Diagramme de Venn de l'événement A et B StudySmarterFig 1. - Diagramme de Venn de l'événement A et B

    2. Événement A ou B : Dans ce cas, au moins l'un des deux événements se produit, ce qui est représenté par l'union des deux ovales.

    Statistiques et probabilités Diagramme de Venn de l'événement A ou B StudySmarterFig. 2 - Diagramme de Venn de l'événement A ou B

    3. Événement non A : Dans ce cas, A ne se produit pas, et on a donc représenté le complémentaire de A.

    Statistiques et probabilités Diagramme de Venn de l'événement non A StudySmarterFig. 3 - Diagramme de Venn de l'événement non A

    Il y a 30 élèves dans un groupe de tutorat, 15 élèves étudient le français, 12 l'espagnol et 5 les deux langues. Dessine un diagramme de Venn pour représenter ces informations.

    A = étudiants qui étudient le français

    B = étudiants qui étudient l'espagnol

    Inclue d'abord la fréquence de l'intersection, puis calcule les autres valeurs autour d'elle.

    Cinq élèves étudient les deux langues, ce qui te laisse 10 élèves étudiant uniquement le français et 7 élèves étudiant uniquement l'espagnol. Cela signifie que les 8 élèves restants n'étudient aucune langue.

    Statistiques et probabilités Exemple diagramme de Venn 1 StudySmarterFig. 4 - Exemple de diagramme de Venn

    Calcule la probabilité qu'un étudiant choisi au hasard :

    a) étudie le français

    b) étudie l'espagnol

    c) étudie l'espagnol mais pas le français

    d) n'étudie aucune langue

    Réponses :

    a) P(étudie le français) \( = \frac{15}{30}=\frac{1}{2} \)

    b) P(étudie l'espagnol) \( = \frac{12}{30}=\frac{2}{5} \)

    c) P(étudie l'espagnol mais pas le français) \( = \frac{7}{30} \)

    d) P(n'étudie aucune langue) \( = \frac{8}{30}=\frac{4}{15} \)

    Arbres de probabilités

    Les arbres de probabilités sont particulièrement utiles pour représenter toutes les issues possibles lorsque deux ou plusieurs événements se succèdent. Pour créer un arbre de probabilités, dessine une branche pour chaque issue d'un événement. Chaque branche doit pointer vers l'issue correspondante et inclure la probabilité de chaque issue.

    Représentons les résultats possibles en lançant deux fois une pièce de monnaie :

    Dans cet exemple H = pile et T = face.

    Statistiques et probabilités Arbre de probabilités d'un lancer de pièce deux fois StudySmarterFig. 5 - Arbre de probabilités d'un lancer de pièce deux fois

    Si tu passes par chaque branche, toutes les issues possibles sont : HH, HT, TH et TT. La probabilité que la pièce tombe sur H ou T est de \( \frac{1}{2} \) à chaque fois, quel que soit le nombre de fois que tu lances la pièce.

    En utilisant l'arbre de la section précédente, si tu souhaites calculer la probabilité d'obtenir deux piles ou deux faces (HH ou TT), tu peux procéder comme suit :

    1. Trouve la probabilité d'obtenir deux piles (HH). Pour ce faire, tu dois multiplier les probabilités le long de cette branche.

    P(HH)=P(H et H)=P(H) × P(H)

    Statistiques et probabilités Arbre de probabilités de l'événement lancer de pièce deux fois avec la probabilité de HH StudySmarterFig. 6 - Arbre de probabilités de l'événement lancer de pièce deux fois et calcul de la probabilité de HH

    2. Maintenant, trouve la probabilité d'obtenir deux faces (TT).

    P(TT)=P(T et T)=P(T) × P(T)

    Statistiques et probabilités Arbre de probabilités de l'événement lancer de pièce deux fois avec la probabilité de TT StudySmarterFig. 7 - Arbre de probabilités de l'événement lancer de pièce deux fois et calcul de la probabilité de TT

    3. Pour trouver la probabilité que HH ou TT se produisent, tu devras additionner leurs probabilités.

    P(HH ou TT)=P(HH)+ P(TT)

    P(HH ou TT)= 14+14=12

    Statistiques et probabilités - Points clés

    • Les statistiques sont l'étude des données collectées à partir d'une population.
    • Les probabilités sont une branche des mathématiques qui étudie la fréquence avec laquelle un certain événement se produit.
    • Les probabilités couvrent des situations de la vie réelle dont il est difficile de prévoir si elles se produiront ou non, car leurs résultats sont aléatoires.
    • Une expérience est un processus qui peut être répété plusieurs fois, produisant un ensemble de résultats spécifiques, par exemple tirer à pile ou face ou lancer un dé.
    • Nous pouvons exprimer les probabilités en fractions, nombres décimaux ou pourcentages.
    • La probabilité conditionnelle fait référence à la probabilité qu'un événement se produise, étant donné qu'un autre événement s'est produit.
    • Les diagrammes de Venn et les arbres de probabilités sont utiles pour représenter les résultats possibles d'une expérience lors de la résolution de problèmes de probabilités.
    Questions fréquemment posées en Statistiques et probabilités

    Comment calculer la moyenne d'une série statistique ?

    La moyenne d'une série statistique est le rapport entre la somme de tous les éléments de la série et le nombre d'éléments de la série. Ce calcul est représenté par la formule suivante: Moyenne = Somme des éléments / Nombre d'éléments. La moyenne peut être utilisée pour décrire un ensemble de données ou pour comparer différents ensembles de données. Par exemple, si vous souhaitez comparer les salaires moyens de deux groupes différents, vous pouvez utiliser la moyenne pour obtenir une indication de quel groupe a les salaires les plus élevés. 

    Quel est l'intérêt des statistiques ?

    Les statistiques sont très utiles pour faire des prédictions et des inférences. Elles nous permettent de prendre des décisions en fonction de données et d'analyser les résultats d'une expérience. Les statistiques sont également importantes pour simuler des situations et étudier leurs conséquences. Enfin, les statistiques sont utilisées pour trouver des relations entre différentes variables et comprendre comment elles interagissent. Sans les statistiques, il serait très difficile de faire des progrès en mathématiques et en sciences.

    Quel est l'intérêt des probabilités?


    Les probabilités sont importantes car elles nous permettent de modéliser et d'analyser différents phénomènes aléatoires. En statistiques, elles nous aident à décrire la fréquence des événements et à prédire leur occurrence à l'aide de certains paramètres. Enfin, les probabilités peuvent être utilisées pour optimiser les processus et prendre des décisions en situation incertaine. Ainsi, on peut dire que les probabilités sont indispensables pour comprendre et interpréter le monde qui nous entoure.

    Comment calculer les statistiques ?

    Il existe de nombreuses façons de calculer les statistiques, mais la médiane, la moyenne et les quartiles sont les plus courantes. La médiane est le nombre au milieu d'un ensemble de données classées par ordre croissant ou décroissant. La moyenne est le nombre obtenu en divisant le somme des valeurs dans un ensemble de données par le nombre de valeurs dans cet ensemble. Les quartiles sont les trois nombres qui divisent une série de données en quatre groupes égaux.

    Comment calculer la probailité d'un événement?

    La formule pour calculer une probabilité est assez simple. Il vous suffit de diviser le nombre d'événements favorables par le nombre total d'événements possibles. Probabilité = nombre d'événements favorables / nombre total d'événements possibles. Cela vous donnera un nombre entre 0 et 1, qui représente la fréquence qu'un événement se produise. Plus le nombre est proche de 1, plus il est probable que l'événement se produise.

    Quels sont les deux branches des statistiques ? 

    Les statistiques sont divisées en deux grandes branches: les statistiques descriptives et les statistiques inférentielles. Les statistiques descriptives sont utilisées pour décrire et résumer les données, tandis que les statistiques inférentielles sont utilisées pour tirer des conclusions à partir de ces données.

    Sauvegarder l'explication
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Teste tes connaissances avec des questions à choix multiples

    On lance deux fois un dé à six faces et on additionne les valeurs. À l'aide d'un arbre de probabilités, détermine la probabilité d'obtenir un sept.

    Les hauteurs dans un histogrammes représentent toujours les effectifs. 

    Les hauteurs dans un histogrammes représentent toujours les fréquences. 

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 13 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !