Calcul matriciel

Les matrices sont des objets primordiaux de l'algèbre linéaire, qui sont utiles notamment dans la résolution de systèmes d'équations et pour effectuer des transformations sur les vecteurs. De plus, les matrices ont des applications très puissantes. Elles sont utilisées dans la mécanique quantique ou encore pour l'algorithme de recherche qui fait fonctionner Google, PageRank. Connaître les règles du calcul matriciel est donc important pour manipuler les matrices avec habileté.

C'est parti

Scan and solve every subject with AI

Try our homework helper for free Homework Helper
Avatar

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Did you know that StudySmarter supports you beyond learning?

SS Benefits Icon

Find your perfect university

Get started for free
SS Benefits Icon

Find your dream job

Get started for free
SS Benefits Icon

Claim big discounts on brands

Get started for free
SS Benefits Icon

Finance your studies

Get started for free
Sign up for free and improve your grades

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

  • Contenu vérifié
  • Dernière mise à jour: 21.11.2022
  • Temps de lecture: 12 min
  • Processus de création de contenu conçu par
    Lily Hulatt Avatar
  • de contenu vérifiées par
    Gabriel Freitas Avatar
  • Qualité du contenu vérifiée par
    Gabriel Freitas Avatar
Inscris-toi gratuitement pour sauvegarder, modifier et créer des fiches.
Sauvegarder l'explication Sauvegarder l'explication

Merci de votre intérêt pour les préférences d’apprentissage !

Merci pour ton intérêt pour les différentes méthodes d’apprentissage ! Quelle méthode préfères-tu ? (par exemple, « Audio », « Vidéo », « Texte », « Pas de préférence ») (optionnel)

Envoyer des commentaires
Lire en podcast 12 minutes

Somme de matrices

Commençons par l'opération la plus simple. Pour faire la somme de matrices, il faut ajouter les coefficients correspondants.

[1234]+[1221]=[0455]

Pour la différence, il faut faire la même chose : mais en soustrayant !

[5264][0271]=[5415]

Attention, les matrices doivent avoir la même taille ou dimension pour effectuer la somme ou la différence.

Nous ne pouvons pas faire la somme (ou la différence) de la matrice [215133] et la matrice [104212]

Même si la somme de ces deux matrices n'est pas définie, nous pouvons effecteur leur produit.

Nous pouvons donner une définition formelle pour la somme de matrices de même taille ou dimension. Soient A et B deux matrices de dimension m×n, avec des coefficients notés aij et bij, où 1im et 1jn. Si C=A+B, alors les coefficients de la matrice C sont donnés par cij=aij+bij.

Produit de matrices

Tout d'abord, il faut distinguer deux types de multiplications que nous pouvons faire avec des matrices. Il existe la multiplication d'une matrice par un scalaire et le produit de matrices.

Multiplication par un scalaire

Pour effectuer la multiplication d'une matrice par un scalaire, il faut multiplier chaque coefficient de la matrice par ce scalaire.

Pour une matrice de dimension 2×2 et un scalaire k, k[abcc]=[kakbkckd]

2×[1234]+[1221]=[0455]

Cela peut te paraître très similaire à la multiplication d'un vecteur par un scalaire — et tu as raison. Les vecteurs sont un cas particulier de matrice.

Multiplication d'une matrice par une matrice

Avant de demander comment faire le produit de deux matrices, il faut se demander s'il est d'abord possible de ce faire. Pour pouvoir effectuer la multiplication de deux matrices, il faut que le nombre de colonnes dans la première soit égal au nombre de lignes dans la seconde.

Soit A une matrice de dimension m×n et soit B une matrice de dimension n×p. Leur produit, AB, est bien définie et est de dimension m×p.

La matrice [215133] est de dimension 3×2 et la matrice [104212] est de dimension 2×3. Leur produit sera donc de dimension 3×3.

Pour calculer les coefficients d'un produit de deux matrices, il faut suivre ces étapes :

  1. Identifie les indices du coefficient que tu veux calculer en regardant sa position. Tu peux imaginer qu'il s'agit de ses coordonnées. Appelons-les i et j.

  2. Multiplie ensuite les coefficients de la i-ème ligne de la première matrice par les coefficients correspondants de la j-ième colonne de la seconde matrice.

  3. Fais la somme de tous ces produits, qui te donnera le coefficient de la matrice avec indices i et j.

Nous pouvons aussi écrire une définition formelle.

Soient A une matrice de dimension m×n et B une matrice de dimension n×p. Notons leurs coefficients comme aij et bij respectivement. Les coefficients du produit AB sont donnés par : (AB)ij=k=1naikbkj

C'est probablement plus clair avec un exemple.

Soient A=[215133] et B=[104212]. Calculons AB.

Commençons par calculer (AB)11. Pour cela, il faut multiplier les coefficients de la première ligne de A et de la première colonne de B, et ensuite faire la somme.

[215133][-104212]=[2×(1)+1×2]

Pour calculer (AB)21, il faut multiplier les coefficients de la deuxième ligne de A et de la première colonne de B, et ensuite faire la somme.

[215-133][-104212]=[05×(1)+(1)×2]

Nous continuons ainsi jusqu'à obtenir tous les coefficients de la matrice AB : [01107118936]

De plus, il faut garder à l'esprit que la multiplication des matrices n'est pas commutative. Voyons un contre-exemple.

Soient A=[1234] et B=[1000]. Calculons AB et BA.

AB=[(1×1+2×0)(1×0+2×0)(3×1+4×0)(3×0+4×0)]=[1030]

BA=[(1×1+0×3)(1×2+0×4)(0×1+0×3)(0×2+0×4)]=[1200]

Comme ABBA, nous pouvons conclure que la multiplication de matrices n'est pas commutative.

Puissance de matrices

La puissance entière d'une matrice est définie de la même manière que la puissance d'un nombre.

Si n est un entier naturel et A une matrice carrée, An=A×...×An fois

Or, comme multiplier des matrices est plus chronophage que multiplier un nombre, nous pouvons considérer plusieurs approches et cas spécifiques qui vont simplifier la vie. À partir d'une certaine puissance, certaines matrices deviennent la matrice nulle, celle qui n'a que des zéros. Ces matrices sont dites nilpotentes.

Une matrice A est nilpotente s'il existe un entier p tel que An est la matrice nulle pour tout np.

Les puissances des matrices diagonales sont faciles à calculer. En effet, si A est une matrice diagonale, An est aussi une matrice diagonale dont les valeurs sur la diagonale principale sont les n-ième puissances des valeurs de A.

Une matrice diagonale est une matrice carrée dont tous les coefficients sont nuls, sauf la diagonale principale.

A=[1003] est une matrice diagonale.

A4=[(1)400(3)4]=[10081]

Cette règle est facile à démontrer par récurrence en prenant une matrice diagonale avec des coefficients λ1,...,λn sur la diagonale principale.

Certaines matrices peuvent être mises sous une forme qui nous permet d'exploiter les propriétés des matrices diagonales. Ces matrices s'appellent des matrices diagonalisables.

Une matrice A est dite diagonalisable s'il existe une matrice inversible P et une matrice diagonale D, telles que A=PDP1.

Une matrice carrée A est dite inversible s'il existe une matrice A1 telle que AA1=A1A=I, où I est la matrice identité.

Si nous avons droit à une matrice diagonalisée, les calculs de puissance se simplifient : An=PDP1×PDP1×...×PDP1×PDP1n fois=PDnP1

Déterminant

Calculer le déterminant d'une matrice de grande dimension peut s'avérer difficile. Il y a plusieurs façons de le faire. Commençons avec un cas simple : une matrice carrée de dimension 2×2.

Le déterminant d'une matrice carrée A=[abcd] est notée det(A) ou |A| et vaut adbc.

Soit A=[3715]. Alors, det(A)=3×57×1=8.

Nous pouvons ensuite voir comment calculer le déterminant pour une matrice carrée de dimension n>2. Dans ce contexte, le déterminant est défini par récurrence.

Soit A une matrice carrée de dimension n dont les coefficients sont notés aij. Soit Aij la matrice obtenue en supprimant la i-ème ligne et la j-ième colonne de A. Le déterminant de A est donné par : det(A)=i=1n(1)i+jaijAij

Comme i et j jouent le même rôle dans cette somme, l'indice utilisée pour la somme aurait pu être j au lieu de i.

Nous pouvons travailler le long de n'importe quelle colonne ou de n'importe quelle ligne pour calculer le déterminant d'une matrice. Il faut donc choisir celle qui contient le plus de zéros pour simplifier les calculs. Voyons pourquoi.

Calculons le déterminant de [132010214]

Si nous travaillons le long de la première ligne, nous obtenons l'expression suivante pour le déterminant : (1)1+1×1|1014|(1)1+2×3|0024|(1)1+3×2|0121|

Or, si nous utilisons plutôt la deuxième ligne, il n'y a plus besoin d'évaluer certains déterminants grâce aux coefficients nuls. L'expression est plus simple : (1)2+2×1|1224|=1(1×(4)(2)×2)=8

Calculer le déterminant sert dans le calcul d'autres objets mathématiques. En particulier, le déterminant permet de savoir si l'inverse d'une matrice existe.

Inverse d'une matrice

Une matrice dispose d'un inverse si son déterminant est non-nul.

L'inverse d'une matrice A est noté A1, et elle est unique matrice qui vérifie AA1=A1A=I, où I est la matrice identité. Une matrice est dite inversible si elle a une inverse.

La matrice identité est la matrice carrée qui a des zéros partout, sauf sur sa diagonale où il n'y a que des 1.

Il y a deux méthodes principalement utilisées pour déterminer l'inverse d'une matrice : le pivot de Gauss ou en utilisant les comatrices.

La comatrice d'une matrice A est la matrice des cofacteurs. Soit Aij la matrice obtenue en supprimant la i-ème ligne et la j-ième colonne de A. Les cofacteurs d'une matrice sont données par la formule suivante : (comA)ij=(1)i+jdet(Aij)

L'inverse de A est alors donnée par la formule suivante : A1=1det(A)tcom(A)

Le pivot de Gauss, également appelé élimination de Gauss-Jordan, est presque la même chose que la résolution d'un système d'équations. Dans cette méthode, trois opérations (et des combinaisons de ces opérations) sur les lignes de la matrice sont permises. Nous pouvons :

  • échanger deux lignes ;

  • multiplier une ligne par une scalaire non-nul ;

  • ou ajouter une ligne à une autre.

Exponentielle d'une matrice

Tu te demandes peut-être quelle est l'utilité de l'exponentielle d'une matrice ? La fonction exponentielle d'un nombre est solution de certaines équations différentielles fondamentales. Similairement, l'exponentielle d'une matrice est solution de certains systèmes d'équations différentielles.

L'exponentielle d'une matrice A est notée exp(A) ou eA et vaut : nN1n!An

Remarque que cette formule est assez similaire à une des définitions de la fonction exponentielle. Voici quelques propriétés de l'exponentielle d'une matrice :

  • si 0 désigne la matrice nulle et I est la matrice identité, alors e0=I ;
  • si tr(A) désigne la trace d'une matrice et det(A) est son déterminant, alors det(eA)=etr(A) ;
  • si les matrices X et Y commutent (c'est-à-dire XY=YX), alors eXeY=eX+Y

Calcul matriciel - Points clés

  • Pour faire la somme de matrices, il faut ajouter les coefficients correspondants.
  • Nous pouvons multiplier une matrice par un scalaire ou par une autre matrice.
  • La puissance d'une matrice est définie par An=A×...×An fois
  • Le déterminant d'une matrice carrée A=[abcd] est noté det(A) ou |A| et vaut adbc.
  • L'inverse d'une matrice A est A1, l'unique matrice qui vérifie AA1=A1A=I.
  • L'exponentielle d'une matrice est définie par eA=nN1n!An
Apprends plus vite avec les 1 fiches sur Calcul matriciel

Inscris-toi gratuitement pour accéder à toutes nos fiches.

Calcul matriciel
Questions fréquemment posées en Calcul matriciel

Comment faire un calcul de matrice ?

Il faut garder en tête que les règles de calcul pour les matrices ont des définitions spécifiques, en particulier pour la multiplication. Il faut faire référence à ces définitions. 

C'est quoi le calcul matriciel ? 

Le calcul matriciel est l'ensemble des règles qui régissent les opérations entre les matrices, telles que l'addition, la différence et la multiplication. 

Quel est le but principal du calcul matriciel ? 

Le but principal du calcul matriciel est de fournir des règles pour manipuler les matrices.

Comment calculer la somme des matrices ?

Pour calculer la somme des matrices, nous devons ajouter les coefficients correspondants. 

Sauvegarder l'explication
Comment tu t'assures que ton contenu est précis et digne de confiance ?

Chez StudySmarter, tu as créé une plateforme d'apprentissage qui sert des millions d'étudiants. Rencontre les personnes qui travaillent dur pour fournir un contenu basé sur des faits et pour veiller à ce qu'il soit vérifié.

Processus de création de contenu :
Lily Hulatt Avatar

Lily Hulatt

Spécialiste du contenu numérique

Lily Hulatt est une spécialiste du contenu numérique avec plus de trois ans d’expérience en stratégie de contenu et en conception de programmes. Elle a obtenu son doctorat en littérature anglaise à l’Université de Durham en 2022, a enseigné au Département d’études anglaises de l’Université de Durham, et a contribué à plusieurs publications. Lily se spécialise en littérature anglaise, langue anglaise, histoire et philosophie.

Fais connaissance avec Lily
Processus de contrôle de la qualité du contenu:
Gabriel Freitas Avatar

Gabriel Freitas

Ingénieur en intelligence artificielle

Gabriel Freitas est un ingénieur en intelligence artificielle possédant une solide expérience en développement logiciel, en algorithmes d’apprentissage automatique et en IA générative, notamment dans les applications des grands modèles de langage (LLM). Diplômé en génie électrique de l’Université de São Paulo, il poursuit actuellement une maîtrise en génie informatique à l’Université de Campinas, avec une spécialisation en apprentissage automatique. Gabriel a un solide bagage en ingénierie logicielle et a travaillé sur des projets impliquant la vision par ordinateur, l’IA embarquée et les applications LLM.

Fais connaissance avec Gabriel

Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

Lance-toi dans tes études
1
À propos de StudySmarter

StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

En savoir plus
Équipe éditoriale StudySmarter

Équipe enseignants Mathématiques

  • Temps de lecture: 12 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication

Sauvegarder l'explication

Inscris-toi gratuitement

Inscris-toi gratuitement et commence à réviser !

Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

  • Fiches & Quiz
  • Assistant virtuel basé sur l’IA
  • Planificateur d'étude
  • Examens blancs
  • Prise de notes intelligente
Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !
Sign up with GoogleSign up with Google
S'inscrire avec un e-mail

Rejoins plus de 30 millions d'étudiants qui apprennent avec notre application gratuite Vaia.

La première plateforme d'apprentissage avec tous les outils et supports d'étude dont tu as besoin.

Intent Image
  • Édition de notes
  • Flashcards
  • Assistant IA
  • Explications
  • Examens blancs