La règle du quotient est une règle utilisée lorsque tu différencies une fonction quotient. Une fonction quotient peut être décrite comme une fonction qui est divisée par une autre fonction.
Merci de votre intérêt pour les préférences d’apprentissage !
Merci pour ton intérêt pour les différentes méthodes d’apprentissage ! Quelle méthode préfères-tu ? (par exemple, « Audio », « Vidéo », « Texte », « Pas de préférence »)
(optionnel)
Prenons un exemple où une fonction trigonométrique est impliquée pour voir comment tu résoudrais \(\frac{dy}{dx}\) :
Si \(y = \frac{\sin x}{3x + 5}\) trouve \(\frac{dy}{dx}\).
Comme précédemment, il est bon de commencer par identifier la formule dont tu as besoin et de la décomposer pour trouver chaque partie de l'équation. Tu sais qu'en raison de la présence d'une fraction dans la question, tu peux utiliser la formule de la règle du quotient. Jetons un coup d'œil à la formule et trouvons-en chaque partie :
\(\frac{dy}{dx} = \frac{3x \cos x + 5 \cos x - 3\sin x}{(3x + 5)^2}\)
Exemples utilisant la notation de fonction
Il est utile de savoir comment utiliser la règle du quotient en termes de notation de fonction, car c'est peut-être ainsi qu'elle apparaît dans la question de l'examen. Rappelons la formule de la notation de la fonction avant de donner quelques exemples !
Lorsque \(f'(x) = \frac{g(x)}{h(x)})then\(f(x) = \frac{g(x)}{h(x)}\) then\(f'(x) = \frac{h(x)g'(x) - g(x)h'(x)}{(h(x))^2}\N}, la règle du quotient s'applique.
Si \(f(x) = \frac{x}{3x^3 + 2}\) trouve \(f'(x)\).
Une fois de plus, il est bon de commencer par identifier la formule nécessaire et chacune de ses parties. Comme il s'agit d'un quotient et que la question est écrite sous forme de fonction, tu sais que tu dois utiliser la règle du quotient en notation de fonction :
Si \(f(x) = \frac{2x + 2}{\ln x}\) trouve \(f'(x)\N).
Tu peux commencer par regarder ta formule pour la notation de la fonction de la règle du quotient et préparer chaque partie de l'équation pour la résoudre :
Comment résoudre les problèmes à l'aide de la règle du quotient ?
Comme les fonctions peuvent être représentées visuellement à l'aide de graphiques, il peut arriver que tu aies besoin de résoudre une question en te basant sur les points que la fonction peut traverser. Pour cela, tu peux encore simplement utiliser la formule de la règle du quotient si elle s'applique, puis avec quelques étapes supplémentaires par la suite, tu pourras trouver la valeur.
Trouve la valeur de \(\frac{dy}{dx}\) pour le point (2, 1/3) de lacourbe où \(y = \frac{x^2}{3x+6}\).
Pour ce type de question, tu dois commencer de la même manière que précédemment, en identifiant ta formule et en trouvant chaque partie de celle-ci :
Maintenant, comme tu cherches à trouver la valeur de \(\frac{dy}{dx}\) lorsque le point de la courbe est (2, 1/3), tu peux substituer la coordonnée x dans l'équation ci-dessus :
La règle du quotient est une règle utilisée dans la différenciation. Elle est utilisée lorsque tu différencies un quotient, c'est-à-dire une fonction qui est divisée par une autre fonction.
La formule de la règle du quotient est la suivante : \(\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}\) si \(y = \frac{u}{v}\).
La formule peut également être écrite en notation de fonction lorsque \(f(x) = \frac{g(x)}{h(x)}\) then\(f(x) = \frac{g(x)}{h(x)}\N then\(f'(x) = \frac{h(x)g'(x) - g(x)h'(x)}{(h(x))^2}\N)
Apprends plus vite avec les 0 fiches sur Règle du quotient
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Règle du quotient
Qu'est-ce que la règle du quotient en mathématiques?
La règle du quotient est une méthode utilisée pour dériver une fraction de deux fonctions différentiables.
Comment appliquer la règle du quotient?
Pour appliquer la règle du quotient, utilisez la formule (u/v)' = (u'v - uv') / v², où u et v sont des fonctions différentiables.
Quand utilise-t-on la règle du quotient?
On utilise la règle du quotient quand on doit dériver le rapport de deux fonctions dans le calcul différentiel.
Quel est un exemple simple de la règle du quotient?
Par exemple, pour f(x) = (x²) / (x + 1), utilisez la règle du quotient: f'(x) = [(2x)(x+1) - (x²)(1)] / (x+1)².
Comment tu t'assures que ton contenu est précis et digne de confiance ?
Chez StudySmarter, tu as créé une plateforme d'apprentissage qui sert des millions d'étudiants. Rencontre les personnes qui travaillent dur pour fournir un contenu basé sur des faits et pour veiller à ce qu'il soit vérifié.
Processus de création de contenu :
Lily Hulatt
Spécialiste du contenu numérique
Lily Hulatt est une spécialiste du contenu numérique avec plus de trois ans d’expérience en stratégie de contenu et en conception de programmes. Elle a obtenu son doctorat en littérature anglaise à l’Université de Durham en 2022, a enseigné au Département d’études anglaises de l’Université de Durham, et a contribué à plusieurs publications. Lily se spécialise en littérature anglaise, langue anglaise, histoire et philosophie.
Gabriel Freitas est un ingénieur en intelligence artificielle possédant une solide expérience en développement logiciel, en algorithmes d’apprentissage automatique et en IA générative, notamment dans les applications des grands modèles de langage (LLM). Diplômé en génie électrique de l’Université de São Paulo, il poursuit actuellement une maîtrise en génie informatique à l’Université de Campinas, avec une spécialisation en apprentissage automatique. Gabriel a un solide bagage en ingénierie logicielle et a travaillé sur des projets impliquant la vision par ordinateur, l’IA embarquée et les applications LLM.
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.