Opérations avec les nombres complexes

Jusqu'à présent, nous avons traité des nombres réels tels que :

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Des millions de fiches spécialement conçues pour étudier facilement
Des millions de fiches spécialement conçues pour étudier facilement

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Opérations avec les nombres complexes?
Ask our AI Assistant

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Opérations avec les nombres complexes

  • Temps de lecture: 6 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Dans cette section, nous allons examiner un nouveau concept appelé nombre imaginaire. Prenons la racine carrée de 2. Nous savons que cela donne la décimale non répétitive

    Maintenant, quelle est la racine carrée de -2 ? Tu pourrais penser qu'il n'y a pas de solution à la racine carrée d'un nombre négatif. Mais ce n'est pas le cas ! En fait, c'est là que le nombre imaginaire entre en jeu. Le concept de nombre imaginaire découle de l'unité imaginaire, désignée par la lettre i, et est représenté par la dérivation suivante :

    Ainsi, la racine carrée de -2 est simplement

    En fait, on peut additionner des nombres réels et des nombres imaginaires. Cette structure des nombres nous amène à l'idée d'un nombre complexe.

    Un nombre complexe est une expression algébrique qui comprend le facteur i = √-1 et qui s'écrit sous la forme z = a + bi.

    Forme standard des nombres complexes

    La forme standard des nombres complexes est

    • Re (z) = a est la partie réelle du nombre complexe z

    • Im (z) = b est la partie imaginaire du nombre complexe z.

    Cette forme est également désignée par

    Nombres réels et imaginaires

    Il existe deux sous-classes importantes de nombres complexes : pour un nombre complexe z = a + bi

    • Si Im (z) = 0, alors z = a est un nombre réel.

    • Si Re (z) = 0, on dit que z = bi est purement imaginaire.

    Pourquoi les nombres complexes sont-ils importants ?

    Les nombres complexes ont de nombreuses applications. Par exemple, ils sont largement utilisés dans le domaine de l'ingénierie électrique et de la mécanique quantique. Les nombres complexes nous aident également à résoudre des équations polynomiales qui n'ont pas de solutions réelles : jette un coup d'œil à Graphique et résolution d'équations quadratiques qui explique comment procéder.

    Nous pouvons effectuer des opérations arithmétiques de base avec des nombres complexes, telles que l'addition, la soustraction, la multiplication et la division.

    Opérations avec des nombres complexes ; addition et soustraction

    Dans cette section, nous allons expliquer les opérations les plus importantes que tu devrais être capable d'effectuer avec des nombres complexes :

    • Addition et soustraction de nombres complexes
    • Multiplication scalaire
    • Multiplication et division de nombres complexes

    Addition et soustraction de nombres complexes

    Pour additionner des nombres complexes, il suffit d'ajouter les parties réelles et imaginaires correspondantes. La même règle s'applique pour la soustraction de nombres complexes.

    Soit z1 et z2 deux nombres complexes avec z1 = a + bi et z2 = c + di, où a, b, c et d sont des nombres réels.

    Formule d'addition des nombres complexes

    En distribuant le signe positif dans le deuxième terme (aux parties réelle et imaginaire) et en rassemblant les termes similaires, nous obtenons

    Formule de soustraction des nombres complexes

    En distribuant le signe négatif dans le deuxième terme (aux parties réelle et imaginaire) et en rassemblant les termes similaires, nous obtenons

    Soit α = 3 - 2i et β = 5 + 7i deux nombres complexes.

    Calcule α+ β

    Détermine α - β

    Multiplication scalaire des nombres complexes

    La multiplication scalaire des nombres complexes est la multiplication d'un nombre réel et d'un nombre complexe. Dans ce cas, le nombre réel est également appelé le scalaire .

    Pour multiplier un nombre complexe par un scalaire, il suffit de multiplier séparément les parties réelle et imaginaire par le scalaire.

    Soit z = a + bi un nombre complexe et c un scalaire, où a, b et c sont des nombres réels.

    Formule de multiplication scalaire des nombres complexes

    Soit α = 3 - 2i et β = 5 + 7i deux nombres complexes.

    Trouve

    Dans ce cas, nous multiplions le nombre complexe α par le nombre réel 7 (aussi appelé scalaire) .

    Évalue

    Dans ce cas, nous multiplions le nombre complexe β par le nombre réel 2 (également appelé scalaire).

    Multiplication des nombres complexes

    La multiplication des nombres complexes est exactement la même que la technique de l'expansion binomiale : applique la méthode FOIL et combine les termes semblables.

    Formule de multiplication des nombres complexes

    Voici comment fonctionne la méthode FOIL, étape par étape.

    Soit z1 et z2 deux nombres complexes avec z1 = a + bi et z2 = c + di, où a, b, c et d sont des nombres réels. Pour les multiplier

    1. Ecris les deux sous la forme standard.
    2. Effectue le développement binomial.
    3. Combine les termes semblables.

    En notant que i2 = -1, on obtient

    En simplifiant, on obtient

    Soit α = 3 - 2i et β = 5 + 7i deux nombres complexes.

    Trouve α x β

    Division de nombres complexes

    Si tu as une fraction de nombres complexes, multiplie le numérateur et le dénominateur par le conjugué complexe du dénominateur.

    Pour un nombre complexe z = a + bi, le conjugué complexe de z est noté z* = a - bi.

    Après cela, développe et simplifie l'expression sous la forme standard des nombres complexes. Le résultat est donné par la formule suivante :

    Formule de division des nombres complexes

    Lorsque tu divises des nombres complexes, assure-toi d'écrire la réponse finale sous sa forme standard.

    Voyons en pratique et étape par étape comment effectuer la division de nombres complexes. Soit z1 etz2 deux nombres complexes avec z1 = a + bi etz2 = c + di, où a, b, c et d sont des nombres réels. En divisant z1 parz2, on obtient

    Le conjugué complexe du dénominateur, z2, estz2*= c - di.

    En multipliant le numérateur et le dénominateur par z2*, on obtient

    En développant cette expression, on obtient

    Enfin, en combinant les termes similaires, nous obtenons

    Soit α = 3 - 2i et β = 5 + 7i deux nombres complexes. Ici, β est le dénominateur. Le conjugué complexe de β est β* = 5 - 7i.

    Calcule α ÷ β

    Ici, β est le dénominateur. Le conjugué complexe de β est β* = 5 - 7i. Ainsi, en multipliant le numérateur et le dénominateur par β*, on obtient :

    Opérations sur les nombres complexes - Principaux enseignements

    OpérationFormule
    Addition
    Soustraction
    Multiplication scalaire
    Multiplication
    Division
    Opérations avec les nombres complexes Opérations avec les nombres complexes
    Apprends avec 0 fiches de Opérations avec les nombres complexes dans l'application gratuite StudySmarter
    S'inscrire avec un e-mail

    Tu as déjà un compte ? Connecte-toi

    Questions fréquemment posées en Opérations avec les nombres complexes
    Qu'est-ce qu'un nombre complexe ?
    Un nombre complexe est un nombre de la forme a + bi où a et b sont des réels et i est l'unité imaginaire telle que i² = -1.
    Comment additionne-t-on des nombres complexes ?
    Pour additionner des nombres complexes, on additionne les parties réelles entre elles et les parties imaginaires entre elles.
    Quelle est la règle pour multiplier deux nombres complexes ?
    Pour multiplier deux nombres complexes, on utilise la distributivité en se rappelant que i² = -1.
    Qu'est-ce que le conjugué d'un nombre complexe ?
    Le conjugué d'un nombre complexe a + bi est a - bi; il est utilisé pour simplifier les divisions.
    Sauvegarder l'explication

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 6 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !