Fonctions hyperboliques inverses

Mobile Features AB

\(\DeclareMathOperator{\sech}{sech}\DeclareMathOperator{\csch}{cosech}\DeclareMathOperator{\coth}{coth}\)Prends une petite longueur de ficelle et place-la en ligne droite sur une surface plane. Maintenant, mets ton doigt sur une extrémité de la ficelle et fais-la glisser le long de la surface perpendiculairement à la direction initiale de la ficelle. Quelle courbe est tracée par la position de l'autre extrémité de la ficelle, lorsque tu la fais glisser le long de la table ?

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Fonctions hyperboliques inverses

  • Temps de lecture: 13 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:13 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:13 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Il s'avère que cette courbe s'appelle une matrice, qui, si le morceau de ficelle original était orienté dans la direction de l'axe \N( y- \N), est représentée par l'équation,

    \[ x = \sech^{-1}{\frac{y}{a}} - \sqrt{a^2 - y^2}, \]

    où \( a \N) est la longueur de la chaîne.

    Tu remarqueras la présence de la fonction sécante hyperbolique inverse dans cette formule. Ainsi, pour comprendre cette courbe, tu dois d'abord comprendre les fonctions hyperboliques inverses, et c'est ce que nous allons explorer dans cet article.

    Fonctions hyperboliques inverses Tractrix StudySmarterFig. 1. Si tu suis l'extrémité d'une ficelle droite tirée depuis l'autre extrémité, perpendiculairement à la ligne d'origine, cela créera un tracé.

    Graphiques des fonctions hyperboliques inverses

    Rappelle-toi que si nous avons une fonction \N(f\N) telle que \N(f(x) = y\N), alors l'inverse de \N(f\N) est la fonction \N(f^{-1}\N) telle que \N(f^{-1}(y) = x\N). C'est exactement la même chose que pour les fonctions hyperboliques invers es.

    Les fonctions hyperboliques inverses standard sont les suivantes,

    • Sinus hyperbolique inverse : \(\sinh^{-1}{x} \),

    • Cosinus hyperbolique inverse : \( \cosh^{-1}{x} \),

    • Tangente hyperbolique inverse : \N( \Ntanh^{-1}{x} \N).

    Les fonctions hyperboliques réciproques inverses sont ,

    • Secante hyperbolique inverse : \(\sech^{-1}{x} \),

    • Cosécante hyperbolique inverse : \( \csch^{-1}{x} \),

    • Cotangente hyperbolique inverse : \N( \Ncoth^{-1}{x} \N).

    N'oublie pas que tu ne peux trouver une fonction inverse que si cette fonction est biunivoque. Cela signifie que chaque valeur du domaine de la fonction correspond à exactement une valeur unique dans l'intervalle de la fonction. Voici les domaines et les étendues de nos fonctions hyperboliques.

    FonctionDomaineDomaine
    \N( y = \sinh{x} \N)\(\left( -\infty, \infty \right) \)\(\left( -\infty, \infty \right) \)
    \N- (y=\cosh{x}\N)\(\left( -\infty, \infty \right) \)\(\left[ 1, \infty \right) \)
    \N- (y=\tanh{x}\N)\(\left( -\infty, \infty \right) \)\(\left( -1, 1 \right) \)
    \N- (y=\csch{x}\N)\(\left( -\infty, 0 \right) \cup \left( 0, \infty \right) \)\(\left( -\infty, 0 \right) \cup \left( 0, \infty \right) \)
    \N- (y=\Nsech{x}\N)\(\left( -\infty, \infty \right) \) \( \left(0, 1\right] \)
    \N- (y=\coth{x}\N)\(\left( -\infty, 0 \right) \cup \left( 0, \infty \right) \)\(\left( -\infty, -1 \right) \cup \left( 1, \infty \right) \)

    Rappelle-toi que le domaine d'une fonction est l'ensemble des entrées valides dans la fonction, et que l'étendue est l'ensemble de toutes les sorties possibles de la fonction.

    Les inversesdu sinus hyperbolique, de la tangente, de la cotangente et de la cosécante sont tous des fonctions biunivoques, et leurs inverses peuvent donc être trouvés sans qu'il soit nécessaire de les modifier.

    Lecosinus et la sécante hyperboliques, en revanche, ne sont pas univoques. C'est pourquoi, pour trouver leurs inverses, tu dois restreindre le domaine de ces fonctions pour n'y inclure que des valeurs positives. En effet, il s'agit de fonctions paires, ce qui signifie que \( \cosh{(-x)} = \cosh{x} \Net \N( \Nsech{(-x)} = \Nsech{(x)} \Npour toute valeur de \N(x\N). Par conséquent, si tu n'autorises les fonctions qu'à prendre des entrées positives, chaque entrée a sa propre sortie.

    Comme pour toutes les fonctions inverses, les graphes de \( \sinh^{-1}{x} \), \( \cosh^{-1}{x} \) et \( \tanh^{-1}{x} \) sont les mêmes que les graphes de \( \sinh{x} \), \( \cosh{x} \) and \( \tanh{x} \), but reflected in the line \( y = x \).

    Fonction hyperbolique inverse arsinh, arcosh et artanh Graphes StudySmarterFig. 2. Les inverses des fonctions sinus, cosinus et tangente hyperboliques sont les droites originales, reflétées par la droite \N( y = x \N).

    Tu peux remarquer que l'inverse du cosinus n'apparaît que dans le quadrant positif du graphique. C'est le résultat de la restriction du domaine, comme nous l'avons déjà mentionné.

    De même, tu remarqueras que \N( \Ntanh^{-1}{x} \N) n'est défini que pour des valeurs de \N( x \N) comprises entre -1 et 1. C'est parce que pour tout \N(x \N), \N( \Ntanh{x} \N) est toujours compris entre -1 et 1. Par conséquent, son inverse ne peut prendre que des valeurs d'entrée dans cet intervalle.

    Les domaines et les plages des fonctions hyperboliques inverses standard sont les suivants :

    FonctionDomainePlage
    \N( y = \sinh^{-1}{x} \N)\N(\Ngauche( -\Ninfty, \Ninfty \Ndroite) \N)\(\left( -\infty, \infty \right) \)
    \N- (y=\cosh^{-1}{x}\N)\(\left[ 1, \infty \right) \)\(\left[ 0, \infty \right) \)
    \N- (y=\tanh^{-1}{x}) \N- (y=\tanh^{-1}{x})\(\left( -1, 1 \right) \)\(\left( -\infty, \infty \right) \)

    Don't confuse \( \sinh^{-1}{x} \) with \( \frac{1}{\sinh{x}} \), these are two separate functions. \( \frac{1}{\sinh{x}} \) est la fonction hyperbolique réciproque de \(\sinh{x}\), connue sous le nom de \( \csch{x} \), tandis que \( \sinh^{-1}{x} \) est la fonction hyperbolique inverse de \(\sinh(x)\).

    Graphiques des fonctions hyperboliques inverses réciproques

    Tu peux voir ci-dessous les graphiques des fonctions hyperboliques inverses réciproques, \( \csch^{-1}{x}\), \( \sech^{-1}{x}\) et \(\coth^{-1}{x}\).

    Fonction hyperbolique inverse arsech, arcosech et artanh Graphes StudySmarterFig. 3. Les inverses des fonctions hyperboliques réciproques, la sécante, la cosécante et la cotangente hyperboliques, sont les graphiques originaux reflétés par la droite \N( y = x \N).

    Une fois encore, le domaine doit être restreint lorsque l'on travaille avec l'inverse de \( \sech{x} \), car il s'agit d'une fonction plusieurs-à-un, tout comme son homologue non réciproque \(\cosh{x}\). Les domaines et les étendues des fonctions hyperboliques réciproques inverses sont les suivants :

    FonctionDomaineDomaine
    \N( y = \csch^{-1}{x} \N)\(\left( -\infty, 0 \right) \cup \left( 0, \infty \right) \)\(\left( -\infty, 0 \right) \cup \left( 0, \infty \right) \)
    \N-(y=\sech^{-1}{x}\N)\(\left( 0, 1 \right] \)\(\left[ 0, \infty \right) \)
    \N- (y=\coth^{-1}{x}) \N- (y=\coth^{-1}{x})\(\left( -\infty, -1 \right) \)\(\N- gauche( 1, \Ninfty \Ndroite) \N)

    Formules des fonctions hyperboliques inversées

    Tout comme les fonctions hyperboliques standard ont des formes exponentielles, les fonctions hyperboliques inverses ont des formes logarithmiques. C'est logique, étant donné que le logarithme naturel d'un nombre est l'inverse de l'élévation de ce nombre à la constante exponentielle \( e \N).

    Les formes logarithmiques des fonctions hyperboliques inverses, \( \sinh^{-1}{x} \), \( \cosh^{-1}{x} \) et \( \tanh^{-1}{x} \) sont,

    \[ \begin{align} \sinh^{-1}{x} & = \ln{\left(x + \sqrt{x^2 + 1} \right)}, \cosh^{-1}{x} & = \ln{\left(x + \sqrt{x^2 - 1} \right)}, \tanh^{-1}{x} & = \frac{1}{2} \ln{\left( \frac{1+x}{1-x} \right) }. \n-{align} \]

    Formules inverses des fonctions hyperboliques réciproques

    Il existe également des formes logarithmiques des fonctions hyperboliques réciproques inverses \( \sech^{-1}{x}\), \( \csch^{-1}{x}\) et \( \coth^{-1}{x}\). Ce sont ,

    \[ \begin{align} \sech^{-1}{x} & = \ln{\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right)}, \csch^{-1}{x} & = \ln{\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \right)}, \coth^{-1}{x} & = \frac{1}{2} \ln{\left(\frac{x+1}{x-1}\right)}. \n-{align} \]

    Exemples de fonctions hyperboliques inversées

    Une question fréquente consiste à prouver l'une des formes logarithmiques présentées ci-dessus. Pour ce faire, il est important d'utiliser la forme exponentielle des fonctions hyperboliques standard.

    Prouve que \[ \sinh^{-1}{x} = \ln{\left(x + \sqrt{x^2 + 1} \right)}. \]

    Solution

    Ecris d'abord \[ y = \sinh^{-1}{x}. \] Maintenant, prends le sinus hyperbolique des deux côtés pour obtenir \[ \sinh{y} = x. \N- Écris \N( \Nsinh{y}) sous forme exponentielle, \N[ x = \Nsinh{y} = \Nfrac{e^y - e^{-y}}{2}. \N- À partir de là, tu peux résoudre \N( y. \N) Commence par multiplier les deux côtés par 2, puis par \N( e^y \N),

    \N- 2 x & = e^y - e^{-y} \N- 2 x e^y & = e^{2y} - 1 \N- 0 & = e^{2y} - 2x e^{y} - 1. \N-END{align} \]

    Il s'agit d'une quadratique dans \N( e^y \N). On peut résoudre ce problème à l'aide de la formule quadratique :

    \[ \N-(-2x) \Npm \Nsqrt{(-2x)^2 - 4 \Ncdot 1 \Ncdot (-1)}}{2 \Ncdot 1} \N-(-2x) \Npm \Nsqrt{(-2x)^2 - 4 \Ncdot (-1)}}{2 \Ncdot 1} \\N- & = \Nfrac{2x \Npm \Nsqrt{4x^2 + 4}}{2} \N- & = \Nfrac{2x \Npm 2 \sqrt{x^2 + 1}}{2} \\N- & = x \Npm \sqrt{x^2 + 1}. \Nend{align} \]

    On peut ici choisir entre le plus et le moins. Le logarithme naturel est indéfini pour les nombres inférieurs à 0, donc si tu prends le moins, c'est-à-dire \(x-\sqrt{x^2+1}\), nous avons toujours \( x < \sqrt{x^2}+1 \), et donc \(e^y=x-\sqrt{x^2+1}\) est indéfini. Le signe plus est donc le bon choix,

    \e^y = x + \sqrt{x^2 + 1}.

    Enfin, prends le logarithme naturel,

    \[ y = \ln{\left(x + \sqrt{x^2 + 1}\right)}, \] et la preuve est complète.

    Il est également important de pouvoir manipuler les fonctions hyperboliques de manière à rendre une question plus facile, ainsi que de s'entraîner à substituer des nombres dans les formules logarithmiques.

    Résous \( \cosh^{3}{x} - 3 \cosh{x} = 0 \), en donnant ta réponse sous forme logarithmique.

    Solution

    Tout d'abord, retire le facteur commun de \( \cosh{x} \),

    \[ \begin{align} \cosh^{3}{x} - 3 \cosh{x} & = 0 \cosh{x} \N- gauche( \Ncosh^2{x} - 3 \Ndroite) & = 0. \Nfin{align} \]

    Pour que cela soit vrai, il faut que soit \Nsoit \N( \Ncosh{x} = 0 \Nsoit \Nsoit \N( \Ncosh^2{x} = 3 \Nimplique \Ncosh{x} = \Npm \Nsqrt{3}. \) You can see from the graphs above that \( \cosh{x} \) never goes below 1. Thus, it cannot be that \( \cosh{x} = 0 \), or that \( \cosh{x} = -\sqrt{3} \). Ainsi, il faut que ce soit le cas,

    \[ \cosh{x} = \sqrt{3}. \]

    Prends l'inverse du cosinus hyperbolique de ceci, pour obtenir,

    \[ x = \cosh^{-1}{\sqrt{3}}, \]

    et enfin, écris ceci en utilisant la formule logarithmique pour le cosinus hyperbolique inverse,

    \[ \begin{align} x & = \ln{\left(3 + \sqrt{\sqrt{3}^2 - 1}\right)} \\ & = \ln{\left(3 + \sqrt{2} \right)}. \Nend{align} \]

    C'est la réponse finale.

    Dérivées des fonctions trigonométriques hyperboliques inverses

    Les dérivées des fonctions hyperboliques inverses \( \sinh^{-1}{x} \), \(\cosh^{-1}{x} \) et \(\tanh^{-1}{x} \) sont,

    \[ \begin{align} \frac{d}{dx} \sinh^{-1}{x} & = \frac{1}{\sqrt{1+x^2}}, \frac{d}{dx} \cosh^{-1}{x} & = \frac{1}{\sqrt{x^2 - 1}}, \frac{d}{dx} \tanh^{-1}{x} & = \frac{1}{1-x^2}. \Nend{align} \]

    Tu remarqueras ici une ressemblance avec les dérivées des fonctions trigonométriques inverses.

    Connaître toutes les dérivées hyperboliques et trigonométriques inverses facilitera la résolution de nombreuses intégrales compliquées, car tu peux utiliser l'intégration par substitution avec une fonction hyperbolique comme substitution. Voir Intégration des fonctions hyperboliques pour plus d'informations à ce sujet.

    Dérivées des fonctions hyperboliques réciproques inverses

    Lesdérivées des fonctions hyperboliques réciproques inverses \( \sech^{-1}{x} \), \( \csch^{-1}{x} \) et \( \coth^{-1}{x} \) sont,

    \[ \begin{align} \frac{d}{dx} \sech^{-1}{x} & = \frac{-1}{x \sqrt{1 - x^2}}, \frac{d}{dx} \csch^{-1}{x} & = \frac{-1}{|x|\sqrt{1+x^2}}, \frac{d}{dx} \coth^{-1}{x} & = \frac{1}{1-x^2}. \n-{align} \]

    Tu peux remarquer que les dérivées de la tangente hyperbolique et de la cotangente hyperbolique semblent être les mêmes. C'est normal, car elles sont définies sur des domaines différents. La tangente hyperbolique et sa dérivée sont définies sur \( |x| < 1 \), tandis que la cotangente hyperbolique et sa dérivée sont définies sur \( |x| > 1 \).

    Fonctions hyperboliques inverses des nombres complexes

    Les fonctions hyperboliques des nombres complexes ne sont pas quelque chose que tu auras à considérer dans le cours de mathématiques complémentaires, mais il peut être intéressant de les étudier néanmoins. Pour un récapitulatif sur les nombres complexes, voir Nombres complexes de base.

    Si tu as étudié les racines de l'unité, tu sais qu'un nombre peut avoir plusieurs racines dans le plan complexe, par exemple, \( 16^{\frac{1}{4}}) pourrait être \( 2, 2i , -2 \) ou \( -2i.\) Voir Racines de l'unité pour plus d'informations.

    De même, dans le premier exemple du sous-titre "Exemples de fonctions hyperboliques inverses", tu résous \(e^y\). Cependant, dans le plan complexe, \(e^y\) aura plusieurs solutions lorsque tu résoudras \(y.\) Ainsi, les fonctions hyperboliques inverses seront des fonctions à valeurs multiples dans le plan complexe.

    Il est courant de définir une valeur principale pour ces fonctions, afin de leur donner une valeur unique. Les valeurs principales habituelles des fonctions hyperboliques inverses standard sont les suivantes,

    \[ \N- début{align}] \sinh^{-1}{z} & = \ln{\left(z + \sqrt{z^2 + 1} \right)}, \cosh^{-1}{z} & = \ln{\left(z + \sqrt{z^2 - 1} \right)}, \tanh^{-1}{z} & = \frac{1}{2} \ln{\left( \frac{1+z}{1-z} \right) }. \n-{align} \]

    Tu peux remarquer qu'il s'agit des mêmes formules que les formes logarithmiques des fonctions hyperboliques inverses sur les nombres réels, mais en remplaçant \N( x\N) par \N( z\N).

    Fonctions hyperboliques inverses - Principaux enseignements

    • En raison de l'étendue des fonctions hyperboliques, les fonctions hyperboliques inverses ne sont pas toutes définies sur l'ensemble de la droite réelle. En particulier :
      • \( \sinh^{-1}{x} \) a pour domaine \( \mathbb{R} \r) et pour étendue \( \mathbb{R}. \r).
      • \( \cosh^{-1}{x} \) has domain \( \{ x: x \geq 1 \} \) and range \( \{ f(x): f(x) \geq 0 \} .\)
      • \( \tanh^{-1}{x} \) has domain \( \{ x: -1 < x < 1 \} \) and range \( \mathbb{R} .\)
    • Tout comme les fonctions hyperboliques standard peuvent être écrites sous forme exponentielle, les fonctions hyperboliques inverses peuvent être écrites sous forme logarithmique. These are, \[ \begin{align} \sinh^{-1}{x} & = \ln{\left(x + \sqrt{x^2 + 1} \right)}, \cosh^{-1}{x} & = \ln{\left(x + \sqrt{x^2 - 1} \right)}, \tanh^{-1}{x} & = \frac{1}{2} \ln{\left( \frac{1+x}{1-x} \right) }. \n-{align} \]
    • Pour prouver les formes logarithmiques des fonctions hyperboliques inverses, tu dois inverser la fonction pour qu'elle soit exprimée en termes de fonction hyperbolique standard, puis résoudre \N(y \N).
    • Les dérivées des fonctions hyperboliques inverses peuvent être très utiles pour résoudre des intégrales délicates. These derivatives are, \[ \begin{align} \frac{d}{dx} \sinh^{-1}{x} & = \frac{1}{\sqrt{1+x^2}}, \frac{d}{dx} \cosh^{-1}{x} & = \frac{1}{\sqrt{x^2 - 1}}, \frac{d}{dx} \tanh^{-1}{x} & = \frac{1}{1-x^2}. \n-{align} \]
    Apprends plus vite avec les 0 fiches sur Fonctions hyperboliques inverses

    Inscris-toi gratuitement pour accéder à toutes nos fiches.

    Fonctions hyperboliques inverses
    Questions fréquemment posées en Fonctions hyperboliques inverses
    Qu'est-ce que les fonctions hyperboliques inverses ?
    Les fonctions hyperboliques inverses sont les inverses des fonctions hyperboliques. Elles incluent arc sinh (asinh), arc cosh (acosh) et arc tanh (atanh).
    À quoi servent les fonctions hyperboliques inverses ?
    Les fonctions hyperboliques inverses sont utilisées pour résoudre des équations impliquant des fonctions hyperboliques et en modélisation en physique et en ingénierie.
    Comment calculer l'arc cosh (x) ?
    Pour calculer l'arc cosh(x), utilisez la formule : acosh(x) = ln(x + √(x² - 1)).
    Quelle est la relation entre les fonctions hyperboliques et trigonométriques ?
    Les fonctions hyperboliques et trigonométriques ont des formules similaires mais utilisent des exp and ln au lieu de sin et cos.
    Sauvegarder l'explication
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 13 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !