Fonctions de module

Mobile Features AB

Les fonctionsa> de module (également connues sous le nom de fonctions de valeur absolue) sont représentées de manière générique sous la forme suivante f(x)=|x|. Le module d'un nombre x sera un nombre de même grandeur, mais positif.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Fonctions de module

  • Temps de lecture: 9 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:9 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:9 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Mais quel est le raisonnement derrière cela ? C'est parce qu'il représente la distance entre zéro et un nombre x sur la ligne des nombres.

    La distance de zéro à 2 est de 2, et la distance de zéro à -2 est également de 2, donc f(2)=|2|=2etf(-2)=|-2|=2

    Fonctions de module Fonction de module Ligne des nombres StudySmarterFonction module sur la ligne des nombres, Marilú García De Taylor - StudySmarter Originals

    C'est pourquoi |x| représente la valeur d'un nombre x sans tenir compte de son signe.

    Si tu as une expression à l'intérieur de la fonction modulus, calcule la valeur à l'intérieur, puis trouve la version positive du résultat.

    Si tu as la fonction f(x) = |x-3|+1 trouverf(-2)

    f(-2)=|-2-3|+1

    f(-2)=|-5|+1 = 5 + 1 = 6

    Équation des fonctions de module

    L'équation d'une fonction de module est notée comme suit :

    f(x)=|x|= x if x0-x if x<0

    Le domaine d 'une fonction modulus est l'ensemble de tous les nombres réels, et l'étendue est l'ensemble de tous les nombres réels supérieurs ou égaux à zéro. D'après l'équation, nous pouvons dire que si le nombre à l'intérieur de la fonction modulus est déjà positif, tu le laisses tel quel, mais si le nombre est négatif, le résultat sera la version positive de ce nombre (comme si tu multipliais le nombre négatif par -1).

    Propriétés des fonctions de module

    Les propriétés des fonctions de module sont les suivantes :

    • Le module ou la valeur absolue d'un nombre donnera toujours un résultat positif.

    |4|=4, |-5|=5

    • Le module d'un nombre x donnera le même résultat que le module de -x.

    |x|=|-x|= x

    |4|=|-4|=4

    • Le module du produit de deux valeurs a et b peut être divisé en un produit de deux valeurs de module distinctes.

    |a x b|=|a| x |b|

    |2 (-3)|=|2|×|-3| |-6|=2 x 3 6=6

    • Le module de la division de deux valeurs a et b peut être divisé en deux valeurs de module distinctes.

    |ab|=|a||b|

    |-93|=|-9||3| |-3|=93 3=3

    • Le module de la somme ou de la soustraction de deux valeurs, a et b, ne peut pas être div isé en la somme ou la soustraction de deux valeurs de module distinctes.

    |a±b||a|±|b|

    Somme:

    |1 +(-2)||1| + |-2| |-1|1+2 13

    Soustraction:

    |1 -(-2)||1| - |-2| |3|1-2 3-1
    • Lors de la résolution d'équations, les fonctions de module impliquent une étape supplémentaire :

    En gardant à l'esprit que la valeur de x à l'intérieur d'une fonction de module peut être positive ou négative, tu dois résoudre l'équation en considérant les deux cas, tu obtiendras donc deux solutions.

    Pour l'équation |3x-2|=4, nous pouvons obtenir 2 solutions possibles comme suit :

    1) Solution 1 :

    3x-2=4 3x=4+2 3x=6 x=63 x=2

    2) Solution 2 :

    -(3x-2)=4 -3x+2=4 -3x=4-2 -3x=2 x=-23

    Comment dessiner le graphique d'une fonction de module ?

    Pour tracer le graphique d'une fonction de module, tu dois substituer les valeurs de x dans f(x)=|x|pour obtenir les valeurs correspondantes de y, comme suit y=f(x). Tu obtiendras un tableau des valeurs de x et de y que tu devras tracer sur le plan de coordonnées. Nous allons substituer les valeurs de x de -2 à 2.

    xy
    -22
    -11
    00
    11
    22
    Fonctions de module Graphique de la fonction de module StudySmarterGraphique de la fonction module, Marilú García De Taylor - StudySmarter Originals

    Pour dessiner le graphique de la fonction module y = |ax+b|tu dois dessiner y=ax+bet refléter la partie de la ligne qui se trouve sous l'axe des x dans l'axe des x.

    Dessine le graphique de y=|x-1| en indiquant les points où ils croisent les axes de coordonnées.

    En ignorant le module, tu dois dessiner le graphique de y=x-1

    • Lorsque y=0, x=1

    La ligne croise l'axe des x à (1, 0)

    • Lorsque x=0,y =-1

    La ligne croise l'axe des y à (0, -1)

    • Esquisse le graphique de y=x-1:

    Fonctions de module Fonction de module graphique exemple StudySmarterExemple de graphique de la fonction module, Marilú García De Taylor - StudySmarter Originals

    • Pour les valeurs négatives de y, réfléchis dans l'axe des x. Dans ce cas, (0, -1) devient (0, 1).

    Fonctions de module Fonction de module graphique exemple StudySmarterExemple de graphique de la fonction module, Marilú García De Taylor - StudySmarter Originals

    Résoudre des équations impliquant des fonctions de module

    Lorsque tu as une équation comme |3x-1|=5tu peux utiliser son graphique pour t'aider à trouver sa solution en suivant les étapes suivantes :

    • Esquisse les graphiques des deux côtés de l'équation séparément. Dans ce cas, y=|3x-1| ety=5

    Fonctions de module Fonction de module Résolution d'équations StudySmarterRésolution d'équations impliquant des fonctions de module, Marilú García De Taylor - StudySmarter Originals

    • Identifie les points d'intersection des deux graphiques. Dans ce cas, A correspond au point d'intersection entre y = 5 et la section originale du graphique de |3x-1|=3x-1et B représente l'intersection entre y=5 et la section réfléchie du graphique de |3x-1|=-(3x-1).

    • Trouve les deux solutions :

    A: 3x-1=5

    3x=5+1

    3x=6

    x=63

    x=2

    B: -(3x-1)=5

    -3x+1=5

    -3x=5-1

    -3x=4

    x=-43

    Résoudre des inégalités impliquant des fonctions de module

    En nous basant sur l'exemple précédent, nous allons maintenant résoudre l'inégalité |3x-1| >5. Tu dois procéder de la même façon que précédemment pour trouver les valeurs de x aux points d'intersection A et B, qui sont x=2 et x=-43.

    Après avoir obtenu les points d'intersection, tu peux regarder le graphique pour identifier les valeurs de x qui satisfont l'inégalité |3x-1| >5.

    Fonctions de module Fonction de module Résolution d'inégalités StudySmarterRésoudre des inégalités impliquant des fonctions de module, Marilú García De Taylor - StudySmarter Originals

    L'inégalité est vraie lorsque le graphique de y=|3x-1| est au-dessus du graphique de y=5Cela se produit lorsque x<-43 ou x>2. En notation d'ensemble :{x:x<-43} {x:x>2}

    Inverse d'une fonction de module

    L'inverse d'une fonction de module n'est pas une fonction à moins que tu ne restreignes son domaine de façon à ce qu'elle puisse être une fonction biunivoque. Pour y parvenir, nous devons restreindre son domaine à une seule moitié du graphique. Tu peux choisir l'une ou l'autre moitié si elle n'est pas spécifiée dans la question.

    Trouve l'inverse de la fonctionf(x)=|x+1|

    Fonctions de module Fonction de module inverse StudySmarterInverse des fonctions de module, Marilú García De Taylor - StudySmarter Originals

    Nous allons restreindre le domaine de la fonction à la seule partie réfléchie du graphique (à gauche de x = -1), que l'on peut désigner par f(x)=-(x+1) pour x-1. Nous pouvons maintenant trouver l'inverse, car cette section du graphique est une fonction biunivoque.

    Suis les étapes pour trouver l'inverse d'une fonction :

    • Remplace f (x) par y

    f(x)=-(x+1)

    y=-(x+1)

    • Intervertis x et y, et résous pour y
    x=-(y+1)

    x=-y-1

    y=-x-1

    f-1(x)=-x-1 Il s'agit de la fonction inverse de f(x)=|x+1|

    Le domaine de la fonction inverse est l'étendue de la fonction originale, c'est-à-dire y0. Par conséquent, le domaine de la fonction inverse f-1(x)=-x-1 est x0.

    Comment différencier une fonction de module ?

    Pour trouver la dérivée de la fonction module, nous devons à nouveau examiner l'équation d'une fonction module :

    f(x)=|x|= x if x0-x if x<0

    Nous savons que ddxx=1Par conséquent, nous pouvons dire ce qui suit :

    ddx(|x|)= 1if x>0-1if x<0 Not definedif x=0

    En général, ddx(|x|)=x|x|pour toutes les valeurs de x à l'exception dex=0

    Si nous remplaçons certaines valeurs de x dans l'équation précédente, alors nous pouvons voir que les affirmations de la fonction par morceaux ci-dessus sont vraies :

    ddx(|-1|)= -1|-1|= -11=-1

    ddx(|0|)= 0|0|= 00= undefined

    ddx(|1|)= 1|1|= 11=1

    Comment intégrer une fonction de module ?

    Pour trouver l'intégrale d'une fonction de module, nous pouvons procéder comme suit :

    Nous savons que la fonction module est définie comme suit,

    f(x)=|x|= x if x0-x if x<0

    Par conséquent, nous devons calculer les intégrales pour x et -x.

    Rappelle-toi que x a un exposant de 1 (x=x1 )

    |x|dx=x1dxif x0-x1dxif x<0

    En utilisant la formule d'intégration : xndx =xn+1n+1+c

    |x|dx= 12x2+cif x0-(12x2)+cif x<0

    Fonctions de modulus - Points clés à retenir

    • Le module d'un nombre x sera le même nombre, mais positif.
    • Le module d'un nombre x représente la distance entre zéro et ce nombre x sur la droite numérique.
    • Pour tracer le graphique de la fonction module y = |ax+b|tu dois dessiner y = ax+bet refléter la partie de la ligne qui se trouve en dessous de l'axe des x dans l'axe des x.
    • L'esquisse des graphiques d'équations ou d'inéquations impliquant des fonctions de module peut aider à les résoudre, en trouvant les coordonnées x des points d'intersection des deux graphiques.
    • L'inverse d'une fonction de module n'est pas une fonction, à moins que tu ne restreignes son domaine à une seule moitié du graphique, de sorte qu'il puisse s'agir d'une fonction biunivoque.
    • Lorsque tu trouves la dérivée et l'intégrale d'une fonction de module, il y a deux solutions possibles, si l'on tient compte du fait que f(x)=|x|=x (pour x0) et quand f(x)=|x|=-x (pour x<0).
    Apprends plus vite avec les 0 fiches sur Fonctions de module

    Inscris-toi gratuitement pour accéder à toutes nos fiches.

    Fonctions de module
    Questions fréquemment posées en Fonctions de module
    Qu'est-ce qu'une fonction de module?
    Une fonction de module est une fonction qui renvoie la valeur absolue d'un nombre, éliminant ainsi tout signe négatif.
    Comment résoudre une équation avec des fonctions de module?
    Pour résoudre une équation avec des fonctions de module, on doit considérer les deux cas possibles pour chaque valeur absolue: une fois positive et une fois négative.
    Quels sont les applications des fonctions de module en mathématiques?
    Les fonctions de module sont utiles en géométrie, pour mesurer des distances, et en analyse, pour gérer des séries convergentes et d'autres applications.
    Comment dessiner le graphique d'une fonction de module?
    Pour dessiner le graphique d'une fonction de module, tracez la partie positive du graphique et reflétez-la par rapport à l'axe des ordonnées.
    Sauvegarder l'explication
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 9 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !