Sauter à un chapitre clé
Pourquoi utilise-t-on la différenciation paramétrique ?
La différenciation paramétrique est utilisée pour décrire la pente et la concavité des courbes paramétriques qui sont définies par des équations paramétriques. Ces types d'équations décrivent souvent des courbes qui se superposent en plusieurs points et qui sont difficiles à décrire avec des équations cartésiennes. Les dérivées paramétriques peuvent ensuite être utilisées pour construire les équations des tangentes et des normales des courbes.
Quelles sont les étapes de la différenciation paramétrique ?
Décomposons-les.
Appliquer la règle de la chaîne standard
La première étape consiste à appliquer la règle de la chaîne standard car nous cherchons toujours la dérivée de dy/dx, mais nous devons trouver l'expression correcte pour les équations paramétriques données. La règle de la chaîne est la suivante :
Prenons un exemple contenant les équations paramétriques d'un cercle :
En utilisant la règle de la chaîne, nous avons maintenant l'expression suivante :
La règle de la chaîne peut également être exprimée comme un Rapport des deux dérivées par rapport au paramètre commun, en réarrangeant l'expression comme indiqué ci-dessus - à condition que le dénominateur ne soit pas nul. Il s'agit d'une astuce qui simplifie le processus, également appelée règle de la chaîne inversée.
Différenciation de chaque équation paramétrique séparément
Dans un deuxième temps, nous devons procéder à la différenciation de chaque équation. Nous allons maintenant procéder à la différenciation de la fonction x par rapport à t, puis répéter le processus pour la fonction y. Cela servira ensuite à créer le Ratio indiqué à l'étape 2, pour trouver la dérivée paramétrique dy/dx, en divisant les deux dérivées .
En continuant avec le premier exemple, les dérivées des fonctions x, y par rapport à t sont les suivantes :
Créer un rapport des dérivées paramétriques.
La troisième et dernière étape consiste à substituer chaque dérivée paramétrique dans l'expression du rapport obtenu par l'application de la règle de la chaîne. En poursuivant l'exemple, nous divisons la dérivée y sur la dérivée x.
- Trouve le rapport dy/dx si dy/dθ est x5+6 et dx/dθ est x3.
Solution :
On divise dy/dθ sur dx/dθ pour obtenir dy/dx.
- Trouve le rapport du/dz est du/da est tan(a) et dz/da est cos2(a).
Solution : On divise du/da sur dz/da pour que la composante da du rapport soit éliminée.
Trouver l'équation d'une tangente à une courbe à l'aide de la différenciation paramétrique
La tangente d'une courbe est une ligne droite qui touche la surface d'une courbe en un point précis comme le montre la figure ci-dessous. Puisqu'une tangente est une ligne droite, l'équation de la tangente a la forme y = ax +c où a est le gradient ou la pente et c est une constante.
La pente de la ligne tangente est égale à la dérivée de la courbe. Si le point de tangence est connu ainsi que les équations paramétriques, l'équation de la tangente peut être trouvée en utilisant la différenciation paramétrique avec la formule suivante, où sont les coordonnées du point de tangence.
Trouve l'équation de la tangente d'une courbe au point (4, -6).
Solutions :
Effectue d'abord la différenciation paramétrique puisque les équations paramétriques sont données. En utilisant la règle de la chaîne inversée, nous divisons dx/dt sur dy/dt.
Maintenant, nous devons trouver les valeurs de t au point de tangence en substituant les coordonnées données (4,-6) dans l'une des équations paramétriques.
Nous substituerons la coordonnée y dans l'équation paramétrique y pour cet exemple particulier afin de montrer ce qui se passe lorsque deux valeurs possibles de t se présentent. En général, une seule substitution est nécessaire pour trouver une valeur pour t au point de la tangente.
Pour vérifier laquelle des deux valeurs de x est valide, nous devons vérifier la valeur de x correspondante si elle est vraie pour la valeur de t choisie, car nous voulons une valeur de t qui soit cohérente et vraie à la fois pour les valeurs de x et de y.
Lorsque t=3 alors :
mais la valeur réelle de x est 4.
Par conséquent, la valeur de t=3 n'est pas valable pour le point de tangence.
Lorsque t=2 alors :
La valeur de t=2 est donc valide.
Nous avons trouvé la valeur de t qui est vraie, nous pouvons donc maintenant continuer à trouver la pente correspondante en substituant la valeur de t à la dérivée trouvée. La dernière étape consiste à substituer la pente et les coordonnées dans la formule donnée :
Comment trouver l'équation d'une normale à une courbe ?
Une normale à une courbe est aussi une ligne droite qui est perpendiculaire à la tangente de la courbe en un point précis comme le montre la figure ci-dessous. De la même façon que l'équation d'une tangente, l'équation de la normale peut également être trouvée en utilisant la dérivée au point spécifié. Cependant, la pente de la normale doit être l'inverse négatif de la dérivée de la courbe comme le montre la formule ci-dessous où T et N indiquent respectivement la pente de la tangente et de la normale.
Trouve la normale à la courbe de l'exemple ci-dessus.
Solutions :
En continuant l'exemple ci-dessus, l'équation de la normale à la courbe peut être trouvée en appliquant la formule donnée. Lapente de la tangente est de -1/4 aux coordonnées données .
En utilisant la formule de l'équation d'une droite et en substituant les coordonnées et la pente, on trouve l'équation de la normale à la courbe.
Différenciation paramétrique - Points clés à retenir
La différenciation paramétrique est utilisée pour différencier des équations paramétriques.
Les équations paramétriques peuvent être différenciées en appliquant la règle de la chaîne inversée
Les dérivées paramétriques sont divisées pour supprimer le paramètre commun et trouver
La dérivée ou la pente d'une courbe peut être utilisée pour trouver l'équation de la tangente de la courbe si le point de tangence est connu.
De même, l'équation d'une normale à une courbe peut être trouvée en utilisant la dérivée ou la pente ainsi que les points de contact.
Apprends avec 0 fiches de Différentiation Paramétrique dans l'application gratuite StudySmarter
Tu as déjà un compte ? Connecte-toi
Questions fréquemment posées en Différentiation Paramétrique
À propos de StudySmarter
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.
En savoir plus