Convexité et Concavité

Mobile Features AB

Cet article explorera la convexité et la concavité, à la fois dans les fonctions et les polygones. Lorsque nous parlons de convexité et de concavité, nous faisons référence à la forme de la courbe ou de la fonction. La convexité et la conc avité semblent être des termes compliqués. Cependant, nous allons apprendre qu'ils n'ont rien d'effrayant - il s'agit simplement d'une façon de décrire l'aspect d'une courbe ou d'une fonction. Alors, sans plus d'introduction, définissons ce que sont exactement les fonctions concaves et convexes.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Convexité et Concavité

  • Temps de lecture: 8 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:8 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:8 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Qu'est-ce qu'une fonction concave ?

    Tout d'abord, nous allons parler des fonctions concaves.

    Une fonction concave est une fonction pour laquelle un segment de droite entre deux points quelconques du graphique ne se situe pas au-dessus de la courbe du graphique. En d'autres termes, la ligne droite est toujours en dessous ou sur la courbe.

    Voici un exemple de fonction concave. Tu peux voir que si nous choisissons deux points quelconques sur la courbe et que nous traçons un segment de droite entre eux, le segment de droite se situera toujours en dessous de la courbe.

    Convexité et concavité, Exemple d'une fonction concave, StudySmarterExemple de fonction concave- StudySmarter Originals

    Bien que cet exemple n'utilise que deux points, pour qu'une fonction soit concave, la règle doit être vraie pour toutes les combinaisons de points de cette fonction, dans l'intervalle donné.

    Comment trouver la concavité dans une équation ?

    Pour représenter algébriquement qu'une fonction est concave, on utilise l'équation suivante :

    λx+(1-λ)yλf(x)+(1-λ)f(y)

    En d'autres termes, supposons quexetysont deux points quelconques de l'axe des x sur lesquels la fonction est représentée.

    Avant d'exprimer cela en mots, il est important de comprendre queλx+(1-λ)ysélectionne n'importe quel point entre les pointsxety. De même, λf(x)+(1-λ)f(y) sélectionne n'importe quel point entref(x)etf(y).

    La première partie de l'inégalité permet de trouver la valeur de la fonction pour tout point situé entrexety. La deuxième partie sélectionne n'importe quel point entre les fonctions de x et y. Ainsi, cette équation représente que la fonction de n'importe quel point entrexetyest supérieure ou égale à tout point situé entre les pointsxety.

    En observant le graphique ci-dessus, il est clair que cela est vrai pour ce graphique car les fonctions des points entre les coordonnées d'intersection sont supérieures aux fonctions entre les deux fonctions, représentées par l'équation linéaire bleue.

    Rappelle-toi que λ est tout nombre compris entre un et zéro, de sorte que tous les points et toutes les fonctions entre les paramètres d'origine sont vérifiés.

    Qu'est-ce qu'une fonction convexe ?

    Une fonction convexe est une fonction pour laquelle un segment de droite entre deux points quelconques du graphique ne se situe pas en dessous de la courbe du graphique, En d'autres termes, la ligne droite est toujours au-dessus ou au même endroit que la courbe de la fonction. C'est le contraire d'une fonction concave.

    Un exemple peut être vu ci-dessous :

    Convexité et concavité, Exemple d'une fonction convexe, StudySmarterExemple de fonction convexe- StudySmarter Originals

    Il est clair que ce type de fonction s'oppose à une fonction concave. Une ligne entre deux points (représentant toutes les fonctions entre les deux fonctions) est toujours au-dessus ou au même niveau que la fonction elle-même.

    Comment trouver la convexité dans une équation ?

    Comme les deux types de fonctions ont des paramètres similaires, leurs équations se ressemblent. Elles n'ont qu'une seule différence essentielle :

    λx+(1-λ)yλf(x)+(1-λ)f(y)

    Remarque que le signe d'inégalité est inversé. Puisque toutes les autres composantes sont identiques, cette fonction représente que tout point situé entre les coordonnées sélectionnées est supérieur ou égal à tout point de la fonction situé entre les deux coordonnées.

    Une fonction peut-elle être à la fois concave et convexe ?

    Oui, c'est possible. En effet, les deux fonctions ont un signe égal dans l'inégalité. L'exemple le plus courant est celui d'une ligne droite, car la fonction d'un point situé entre deux points correspondra à la fonction équivalente entre les deux fonctions.

    Qu'est-ce qu'un polygone concave ?

    Un polygone concave est une forme géométrique dont au moins un angle interne dépasse 180 degrés (ou πradians). C'est-à-dire qu'il y a une ligne qui se courbe plus à l'intérieur qu'une ligne droite.

    Un exemple de ce type de forme peut être vu ci-dessous :

    Convexité et concavité, exemple de polygone concave, StudySmarterExemple de polygone concave- StudySmarter Originals

    Dans la forme ci-dessus, l'angle EDC dépasse 180 degrés. Il s'agit donc d'une fonction concave.

    Il existe un test visuel qui permet de vérifier si un polygone est concave : si une ligne droite entre deux points quelconques à l'intérieur d'un polygone sort de la forme, il s'agit d'un polygone concave. Par exemple, ci-dessous, nous pouvons voir que si nous traçons le segment de droite ECla ligne sort de la forme. Par conséquent, le polygone est concave.

    Convexité et concavité, Test visuel pour un polygone concave, StudySmarterTest visuel pour le polygone concave- StudySmarter Originals

    Qu'est-ce qu'un polygone convexe ?

    Un polygone convexe est un polygone dont aucun angle interne ne dépasse 180 degrés (π radians), c'est-à-dire qu'il n'y a pas d'angle interne qui se courbe plus loin qu'une ligne droite. Rappelle qu'un polygone est une forme entièrement constituée de segments de droite.

    Un exemple serait la forme suivante :

    Convexité et concavité, exemple de polygone convexe, StudySmarterExemple de polygone convexe - StudySmarter Originals

    Le test visuel pour les polygones concaves peut être inversé pour tester un polygone convexe. Comme ce polygone n'a pas deux points qui créent un segment qui se croise à l'extérieur de lui, cette forme géométrique est un polygone convexe.

    Différences entre concavité et convexité

    La principale différence entre la concavité et la convexité réside dans le fait que les angles sous-tendus dans les formes convexes s'incurvent vers l'extérieur alors que les angles sous-tendus dans les formes concaves s'incurvent vers l'intérieur. Tout repose sur le fait qu'il y a ou non un angle qui dépasse 180 degrés.

    Tu trouveras ci-dessous d'autres exemples de polygones concaves et convexes. Vois si tu peux déterminer s'ils sont concaves ou convexes.

    Pour les polygones suivants, détermine s'ils sont concaves ou convexes.

    Solution :

    Convexité et concavité, Déterminer la concavité ou la convexité exemple 1, StudySmarterDéterminer la concavité ou la convexité exemple 1- StudySmarter Originals

    Dans la forme ci-dessus, on peut voir qu'il y a des angles intérieurs qui dépassent 180 degrés. Par exemple, l'angle KJI dépasse 180 degrés. Il est donc concave.

    Convexité et concavité, Déterminer la concavité ou la convexité exemple 2, StudySmarterDéterminer la concavité ou la convexité exemple 2- StudySmarter Originals

    Pour ce polygone, on peut voir qu'il y a aussi des angles intérieurs qui dépassent 180 degrés. Par exemple, l'angle EDC dépasse 180 degrés. Il est donc concave.

    Convexité et concavité, Déterminer la concavité ou la convexité exemple 3, StudySmarterDéterminer la concavité ou la convexité exemple 3- StudySmarter Originals

    Pour le polygone ci-dessus, nous pouvons voir qu'il n'y a pas d'angles intérieurs qui dépassent 180 degrés. Il est donc convexe.

    Tu trouveras ci-dessous d'autres exemples de fonctions concaves et convexes. Vois si tu peux déterminer si elles sont concaves ou convexes.

    Pour les fonctions suivantes, détermine si elles sont concaves, convexes ou les deux.

    Solution :

    Convexité et concavité, Déterminer la concavité ou la convexité des fonctions exemple 1, StudySmarterDéterminer la concavité ou la convexité des fonctions exemple 1- StudySmarter Originals

    Dans l'exemple ci-dessus, nous avons une fonction cubique. Si nous traçons un segment de droite allant du point (0,3) au point (1,6)il se situerait au-dessus de la courbe. Cette fonction est donc convexe.

    Convexité et concavité, Déterminer la concavité ou la convexité des fonctions exemple 2, StudySmarter

    Déterminer la concavité ou la convexité des fonctions exemple 2- StudySmarter Originals

    Ci-dessus, nous avons une fonction quartique. Nous pouvons voir que tout segment de droite tracé se situera en dessous de la courbe. La fonction est donc concave.

    Convexité et concavité, Déterminer la concavité ou la convexité des fonctions exemple 3, StudySmarterDéterminer la concavité ou la convexité des fonctions exemple 3- StudySmarter Originals

    Enfin, nous avons une ligne droite. N'importe quel segment de droite se trouvera sur la ligne et elle est donc à la fois concave et convexe.

    Convexité et concavité - Principaux enseignements

    • Aucun segment créé par deux points quelconques d'une fonction concave ne sera au-dessus de la fonction elle-même.
    • Aucun segment créé par deux points quelconques d'une fonction convexe ne sera inférieur à la fonction elle-même.
    • Une fonction peut être à la fois concave et convexe (par exemple une ligne droite).
    • Un polygone concave a un angle interne supérieur à 180 degrés.
    • Un polygone convexe n'a pas d'angle interne supérieur à 180 degrés.
    Questions fréquemment posées en Convexité et Concavité
    Qu'est-ce qu'une fonction convexe ?
    Une fonction est convexe si, pour tout segment joignant deux points du graphe, le segment est au-dessus du graphe.
    Comment déterminer si une fonction est concave ?
    Pour vérifier si une fonction est concave, on examine si la dérivée seconde est négative pour tous les points de l'intervalle.
    Quelle est la différence entre convexité et concavité ?
    Convexité indique que la courbe est tournée vers le haut, tandis que concavité signifie que la courbe est tournée vers le bas.
    Qu'est-ce que la dérivée seconde indique sur la convexité ?
    La dérivée seconde positive indique la convexité, tandis qu'une dérivée seconde négative indique la concavité.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Laquelle des fonctions suivantes serait une fonction convexe ?

    Lequel des éléments suivants est une fonction concave ?

    Quelle équation est à la fois concave et convexe ?

    Suivant
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 8 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !