Sauter à un chapitre clé
Qu'est-ce que le cercle unitaire ?
Le cercle unitaire a un rayon de 1 et son centre est situé à l'origine (0,0). La formule du cercle unitaire est donc la suivante
Cette formule est ensuite utilisée comme base en trigonométrie pour trouver les fonctions trigonométriques et dériver les identités de Pythagore.
Nous pouvons utiliser ce cercle pour calculer les valeurs sin, cos et tan d'un angle 𝜃 compris entre 0 ° et 360 ° ou 0 et 2𝜋 Radians.
À quoi sert le cercle unitaire ?
Pour tout point situé sur la circonférence du cercle unitaire, la coordonnée x sera sa valeur cos, et la coordonnée y sera la valeur sin. Par conséquent, le cercle unitaire peut nous aider à trouver les valeurs des fonctions trigonométriques sin, cos et tan pour certains points. Nous pouvons dessiner le cercle unitaire pour les angles les plus courants afin de trouver leurs valeurs sin et cos.
Le cercle unité a quatre quadrants : les quatre régions (en haut à droite, en haut à gauche, en bas à droite, en bas à gauche) du cercle. Comme tu peux le voir, chaque quadrant a les mêmes valeurs de sin et de cos, mais avec des signes différents.
Comment dériver le sinus et le cosinus du cercle unitaire ?
Voyons comment ces valeurs sont calculées. Nous savons que lorsque 𝜃 = 0 °, sin𝜃 = 0 et cos𝜃 = 1. Dans notre cercle unitaire, un angle de 0 ressemblerait à une ligne droite horizontale :
Par conséquent, comme sin𝜃 = 0 et cos𝜃 = 1, l'axe des abscisses doit correspondre à cos𝜃 et l'axe des ordonnées à sin𝜃. Nous pouvons vérifier cela pour une autre valeur. Considérons 𝜃 = 90 ° ou 𝜋 / 2.
Dans ce cas, nous avons une droite verticale dans le cercle. Nous savons que pour 𝜃 = 90 °, sin 𝜃 = 1 et cos 𝜃 = 0. Cela correspond à ce que nous avons trouvé plus tôt : sin 𝜃 est sur l'axe des y, et cos 𝜃 est sur l'axe des x. Nous pouvons également trouver tan 𝜃 sur le cercle unitaire. La valeur de tan 𝜃 correspond à la longueur de la ligne qui va du point de la circonférence à l'axe des x. Rappelle-toi également que tan𝜃 = sin𝜃 / cos𝜃.
Le cercle des unités pour sin, cos et tan
Le cercle unitaire et l'identité de Pythagore
D'après le théorème de Pythagore, nous savons que pour un triangle rectangle . Si nous devions construire un triangle à angle droit dans un cercle unitaire, il ressemblerait à ceci :
Donc a et b sont sin𝜃, et cos𝜃 et c vaut 1. On peut donc dire : ce qui est la première identité pythagoricienne.
Cercle unitaire - Points clés
Le cercle unitaire a un rayon de 1 et un centre à l'origine.
La formule du cercle unitaire est la suivante .
Le cercle unité peut être utilisé pour trouver les valeurs sin et cos des angles compris entre 0 ° et 360 ° ou entre 0 et 2𝜋 Radians.
La coordonnée x des points sur la circonférence du cercle unitaire représente la valeur cos de cet angle, et la coordonnée y est la valeur sin.
Apprends avec 0 fiches de Cercle Unité dans l'application gratuite StudySmarter
Tu as déjà un compte ? Connecte-toi
Questions fréquemment posées en Cercle Unité
À propos de StudySmarter
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.
En savoir plus