Poulies

Mobile Features AB

Il n'est pas facile de soulever des matériaux lourds. Ce problème peut être résolu à l'aide d'une machine simple comme une poulie. Une poulie comprend une roue et un axe fixe, avec une rainure sur les bords pour guider une corde ou un câble.

C'est parti

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Poulies

  • Temps de lecture: 10 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:10 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:10 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Les poulies sont ce qu'on appelle des machines simples. Sans utiliser de moteur, elles peuvent aider à multiplier la force appliquée pour soulever un objet. Lorsque tu assembles deux ou plusieurs roues et que tu fais passer une corde autour d'elles, tu as créé une formidable machine à soulever. La charge est la quantité de masse de l'objet à déplacer, et l'effort est la force nécessaire pour déplacer l'objet.

    Si tu augmentes le nombre de poulies dans un système, tu auras besoin de plus de corde pour tirer la charge sur une certaine distance. Par conséquent, tu devras appliquer la force pendant une période plus longue lorsque tu auras plus de poulies.

    Comment fonctionnent les poulies

    Au fur et à mesure que tu ajoutes des poulies, tu augmentes ton avantage mécanique et il devient très facile de soulever la même charge. Cependant, avant de continuer, définissons ce qu'est l'avantage mécanique et précisons les différences entre le poids et la masse.

    • Le poids est la force avec laquelle la gravité attire un objet vers le sol. Il se mesure en newtons (N).

    • La masse est la mesure de la quantité de substance contenue dans un objet et se mesure en kilogrammes (kg).

    • L'avantage mécanique est le rapport entre la force qui effectue le travail utile et la force appliquée. C'est la mesure de la façon dont les machines simples multiplient les forces.

    Si tu as un sac dont la masse est d'environ 40 kg, tu peux calculer son poids comme suit : \(poids = masse \cdot gravité\).

    \(Poids = 40 kg \cdot 9,8 m/s^2 = 392 kg \cdot m /s^2 = 392 N\).

    La gravité terrestre, exprimée en newtons, est environ dix fois supérieure à la masse exprimée en kilogrammes.

    Système de poulie à une roue

    Une simple poulie t'aide à soulever des charges en inversant le sens de la charge. Si tu tires la corde vers le bas, ta charge monte, comme le montre le schéma ci-dessous.

    Poulies Poulie à une roue StudySmarterPoulie à une roue. Image:César Rincón CC BY-SA 3.0,

    Système de poulie à deux roues

    En ajoutant une roue supplémentaire au système, tu peux maintenant réduire l'effort que tu utiliserais pour soulever la même charge en utilisant un système de poulies à une roue. Si j'avais mon sac d'une masse de 40 kg et d'un poids de 400 N, cette fois-ci, le poids de la charge sera réparti entre les deux poulies. Par conséquent, tu auras besoin de la moitié de l'effort nécessaire pour tirer la charge. Les poulies qui ont plus de roues donnent plus d'avantages mécaniques.

    Avec le système à deux roues, lorsque tu tires 5 mètres de la corde, tu ne déplaces la charge que sur la moitié de la distance. Cela représente 2,5 mètres.

    Poulies, deux roues, Study SmarterSystème de poulie à deux roues. Image : domaine public.

    Système de poulie à quatre roues

    Si quatre roues sont maintenues ensemble par une corde pour former une poulie, tu remarqueras que quatre sections du poids seront suspendues aux roues de la poulie. Cela signifie que le poids de notre sac de 400 N (40 kg) sera maintenant réparti sur chaque roue, et nous n'aurons besoin que d'un quart de la force pour déplacer la charge autant que nous l'aurions fait avec une simple poulie à une roue.

    L'avantage mécanique de ce système de poulies sera deux fois supérieur à celui du système à deux roues. Cependant, pour soulever la charge sur une distance de 5 mètres, la corde devra être tirée sur quatre fois cette distance. Cela représente 20 mètres.

    Poulies Poulie à quatre roues StudySmarterSystème de poulie à quatre roues. Image : domaine public.

    Types de poulies

    Parmi les machines simples, il existe trois types de systèmes de poulies :

    • Poulies fixes : elles sont également appelées à point unique. Ce type de poulie reste fixe alors que la charge reste d'un côté de la roue et que l'effort est appliqué de l'autre côté. Et pour cette raison, tu auras besoin de la même quantité de force pour soulever l'objet.

    • Poulies mobiles : elles sont différentes des poulies fixes car le système de poulies se déplace en fait avec la charge. Contrairement à la poulie fixe, ce système ne change pas la direction, il multiplie plutôt la force qui est exercée sur la charge. Elle est utile pour les charges plus lourdes, et tu n'auras pas besoin d'autant d'efforts pour soulever la charge.

    • Poulies composées : Ces systèmes sont une combinaison des systèmes de poulies fixes et mobiles. Ils ne se contentent pas de multiplier la force appliquée à la charge, ils lui permettent aussi de changer de direction. Ce sont les plus pratiques pour soulever des charges lourdes.

    Trouver l'accélération d'une charge

    Voici quelques exemples travaillés pour trouver l'accélération d'une charge. Pour certains d'entre eux, nous utilisons les équations du SUVAT.

    Trouver l'accélération

    Si les deux particules du diagramme ci-dessous sont libérées du repos, quelle sera leur accélération ?

    Poulie à une roue, Poulies, StudySmarter

    Réponse :

    La particule ayant la masse la plus élevée tombera, et la particule ayant la masse la plus faible montera. Prenons la particule de 5 kg comme particule a, et la particule de 12 kg comme particule b.

    Pour clarifier le poids de chaque particule, nous devons multiplier leur masse par la gravité. Nous utilisons donc g = 9,8 m / s².

    Poids de a = 5g

    Poids de b = 12g

    Tu peux maintenant modéliser une équation pour l'accélération et la tension de chaque particule.

    \(T - 5kg \cdot g = 5kg \cdot \text{ a [Particule a] [Equation 1]}\)

    \(12kg \cdot g - T = 12kg \cdot \text{ a [Particule b] [Equation 2]}\)

    Tu peux maintenant résoudre cette équation simultanément. Additionne les deux équations pour éliminer la variable T.

    \(7kg \cdot g = 17kg \cdot a\c)

    Si tu prends g = 9,8 m / s².

    \(a = 4,0 m/s^2)

    Enquête sur deux possibilités

    Deux particules de masse 8 kg et m kg sont reliées par une corde tendue passant sur un piquet lisse. Les deux particules sont suspendues verticalement, l'une d'entre elles étant maintenue au repos. La particule est relâchée. Étant donné que l'accélération est de 5 m/s², trouve la masse m.

    Réponse :

    Dessinons un schéma adapté à la question.

    Poulie à une roue, Poulies, StudySmarter

    Prenons la particule ayant une masse de 8 kg comme particule a, et la particule ayant une masse inconnue comme b.

    Pour que tout cela fonctionne, la masse de la particule b est soit plus grande, soit plus petite que celle de la particule a. Cela déterminera quelle particule accélérera. Il se peut donc que nous devions étudier les deux possibilités.

    Examinons donc la situation où m > 8.

    Résolvons la particule a verticalement :

    \(T - 8kg \cdot g = 8 kg \cdot 5 m/s^2 \cquad T = 40 N + 8 kg \cdot (9,8 m/s^2) \cquad T = 118,4N\)

    Résoudre la particule b verticalement :

    \(mg - 118,4 N = 5 m/s^2 \cdot m \cdot mg -5m/s^2 \cdot m = 118,4N \cdot m(g-5m/s^2) = 118,4N\)

    \(m = \frac{118.4 N}{g - 5 m/s^2} = 24.7 kg\)

    Ce serait la masse de la particule b dans le cas où m > 8.

    Prenons maintenant le cas où m < 8

    \(8kg \cdot g - D = 8kg \cdot 5m/s^2\)

    T = 38,4N

    Résoudre la particule b verticalement :

    \N(38.4 N - mg = 5 m/s^2 \Nm \Nquad 38.4 N = 5 m/s^2 \Nm + mg \Nquad 38.4 N = m (5m/s^2 + g)\N)

    \(m = \frac{38.4N}{5 m/s^2 + g}\)

    m = 2,6 kg

    Nous avons maintenant une masse pour les deux scénarios. Si la masse de la particule a> b, b accélère vers le haut tandis que a accélère vers le bas. En revanche, si a < b, a accélérera vers le haut tandis que b accélérera vers le bas.

    SUVAT

    Le schéma montre deux particules qui sont reliées par une ficelle légère inextensible. La particule a de 5 kg se trouve sur une surface horizontale rugueuse et la particule b de 3 kg est suspendue à l'autre extrémité de la ficelle. La ficelle passe au-dessus d'une poulie légère et lisse. La vitesse initiale des deux particules est de 2 ms-1 et une force de frottement constante de 4N agit contre a. Les particules ralentissent et s'arrêtent avant que a n'atteigne la poulie ou que b ne touche la chute. Trouve :

    • L'accélération des particules.

    • La distance parcourue par les particules avant qu'elles ne s'immobilisent.

    Poulie à une roue, Poulies, StudySmarter

    Figure 7. Exemple de poulie sur SUVAT

    Réponds :

    1. \(T -4g = 5a \text{ [Equation 1] [Particule a résolue horizontalement]}\N- \N(3g - T = 3a \text{ [Equation 2] [Particule a résolue horizontalement]})

    \(3g - T = 3a \text{ [Equation 2] [Particule b résolue verticalement]}\)

    Additionner les équations

    \N(-g = 8a\N)

    \N(a = \frac{-g}{8}\N)

    Prends g comme étant 9,8 ms-2

    \N(a = -1.225 ms^{-2}\N)

    s = x

    u = 2 ms-1

    v = 0

    a = -1,225 ms-2

    t = ?

    Nous utiliserons l'équation qui n'a pas de t puisque nous n'avons pas d'informations à ce sujet.

    \N(v^2 = u^2 + 2as\N)

    \(0 = 4ms^{-1} - 2 \cdot 1.225 ms^{-2}\)

    \(s = \frac{4ms^{-1}}{2 \cdot 1.225 ms^{-2}}\)

    \N(s = 1.6 m\N)

    Poulies - Points clés

    • Une poulie est un ensemble de roues sur lesquelles tu boucles une corde pour faciliter le levage d'objets.
    • Il existe trois types de systèmes de poulies. Les poulies fixes, les poulies mobiles et les poulies composées.
    • Plus il y a de roues dans ton système, plus tu as d'avantages mécaniques pour soulever ta charge.
    • En incluant une roue dans ton système de poulie à une roue, tu réduis la force nécessaire pour soulever la charge, mais tu devras déplacer ta corde sur une distance deux fois plus grande pour que la charge couvre la distance qu'elle aurait parcourue s'il s'agissait d'un système à une roue.
    • Les équations SUVAT peuvent être utilisées pour résoudre certains problèmes de poulies.

    Images

    Poulie à une roue https://commons.wikimedia.org/w/index.php?curid=643667

    Questions fréquemment posées en Poulies
    Qu'est-ce qu'une poulie en mathématiques ?
    Une poulie en mathématiques est un système mécanique simple utilisé pour enseigner des concepts comme la force, la tension et le mouvement.
    Comment calcule-t-on la force nécessaire pour soulever une charge avec une poulie ?
    Pour calculer la force, on utilise la formule F = m * g, où m est la masse et g est l'accélération due à la gravité, ajustée par le nombre de poulies.
    Quels sont les types de poulies couramment étudiés ?
    Les types couramment étudiés sont les poulies fixes, les poulies mobiles et les systèmes de poulies composées.
    Quel est l'avantage mécanique d'une poulie ?
    L'avantage mécanique d'une poulie est de réduire la quantité de force nécessaire pour soulever une charge en répartissant le poids sur plusieurs segments de corde.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Lequel de ces éléments n'est pas un type de poulie ?

    Les poulies peuvent-elles multiplier les forces ?

    Le rapport entre la force qui effectue le travail utile et la force appliquée. Comment s'appelle cette mesure ?

    Suivant
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 10 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !