Sinus
Considérons un triangle rectangle. Le sinus de l'angle \(\theta\) est \( \sin (\theta) = \frac{c\hat{o}t\acute{e} \ oppos\acute{e}}{hypot\acute{e}nuse} \).
Fig. 1 - La trigonométrie d'un triangle rectangle
Pourquoi définir une telle valeur ? En fait, les scientifiques de l'antiquité ont observé que ce rapport est toujours le même pour le même angle, peu importe les côtés du triangle rectangle. Cela nous permet, entre autres, de déterminer des longueurs ou des angles inconnus dans un triangle, par exemple grâce à loi des sinus. Le sinus n'est néanmoins pas le seul rapport entre les côtés d'un triangle rectangle ayant cette propriété. Il y a également le cosinus d'un angle.
Cosinus d'un angle
En considérant le même schéma de la section précédente, le cosinus d'un angle \( \theta \) est \( \frac{c\hat{o}t\acute{e} \ adjacent} {hypot\acute{e}nuse} \). Le cosinus dispose de sa propre loi qui nous permet de calculer des longueurs ou des angles inconnus : la loi des cosinus, plus couramment appelée le théorème d'Al-Kashi.
Nous pouvons également définir la tangente d'un angle. La tangente est égale à la longueur du côté opposé divisée par la longueur du côté adjacent : \( \tan (\theta) = \frac{c\hat{o}t\acute{e} \ oppos\acute{e}}{c\hat{o}t\acute{e} \ adjacent} \)
Même s'il est possible de définir le sinus, le cosinus et la tangente d'un angle à partir d'un triangle rectangle, il y a d'autres définitions possibles, notamment à partir du cercle trigonométrique.
Cercle trigonométrique
Le cercle trigonométrique est un cercle de rayon \(1\) dont le centre est l'origine. Ce cercle nous permet de définir le sinus, le cosinus et la tangente pour des angles négatifs et les angles de plus de \(90 °\). Le cercle trigonométrique montre également comment un angle peut avoir plusieurs mesures. De plus, le cercle trigonométrique nous amène également à définir une nouvelle unité de mesure pour les angles : le radian.
Pour convertir des radians aux degrés — et vice-versa, nous utilisons la relation \( \pi = 180 °\)
Fig. 2 - Le cercle trigonométrique
Formules trigonométriques
Il existe de nombreuses formules qui permettent de simplifier des expressions trigonométriques. Les deux formules trigonométriques plus importantes sont probablement les suivantes : \[ \tan \theta = \frac{\sin \theta}{\cos \theta}\] \[\cos^2 \theta + \sin^2 \theta = 1\] Il y a aussi les formules d'addition, pour une somme d'angles, ainsi que les formules de duplication. De plus, nous pouvons dériver des formules à partir de la parité et de la périodicité des fonctions trigonométriques. Enfin, il y a des formules plus avancées sur qui relient les fonctions trigonométriques et les nombres complexes.
Équations trigonométriques
Les équations trigonométriques contiennent des fonctions trigonométriques, notamment le sinus, le cosinus ou la tangente. Pour résoudre une équation trigonométrique, il est nécessaire d'exploiter les fonctions circulaires réciproques, aussi appelées fonctions trigonométriques inverses. À partir du sinus, du cosinus ou de la tangente, la fonction trigonométrique inverse nous donne l'angle associé.
La fonction arc sinus, notée \(\arcsin(x)\), associe à chaque nombre \(x\) dans l'intervalle \([-1,1]\) l'angle dans l'intervalle \([\frac{-\pi}{2}, \frac{\pi}{2}]\) dont le sinus est égal à \(x\). Similairement, arc cosinus est notée \(\arccos(x)\) et donne l'angle dans l'intervalle \([\frac{-\pi}{2}, \frac{\pi}{2}]\) dont le cosinus est égal à \(x\).
La fonction arc tangente, \(\arctan(x)\), fait la même chose, mais cette fonction est définie sur l'ensemble des nombres réels, \( \mathbb{R}\).
Nous pouvons également noter les fonctions trigonométriques inverses de la façon suivante : \( \sin^{-1}(x)\), \( \cos^{-1}(x)\) et \( \tan^{-1}(x)\).
Illustrons comment appliquer ces fonctions à la résolution des équations trigonométriques avec un exemple.
Déterminons tous les \(x\) qui vérifient l'équation \(\sin(2x - 1) = \frac{1}{2}\).
Appliquons la fonction arcsinus aux deux membres de l'équation : \(\arcsin(\sin(2x - 1)) = arcsin(\frac{1}{2})\)
À l'aide d'une calculatrice, il en résulte que : \(2x - 1 = \frac{\pi}{6}\)
Or, si nous souhaitons toutes les valeurs de \(x\) qui vérifient cette équation, il faut se rappeler que la fonction sinus est périodique. Il y a donc une infinité de valeurs qui vérifient cette relation. Ainsi, pour tout nombre entier \(k\), nous avons : \(2x - 1 = \frac{\pi}{6} + 2k\pi\)
Nous pouvons maintenant procéder aux étapes habituelles dans la résolution des équations : \(x = 1 + \frac{\pi}{12} + k\pi\).
En simplifiant encore une fois, nous obtenons enfin que : \(x = 1 + \frac{13k\pi}{12} \).
Trigonométrie - Points clés
- Le sinus de l'angle \(\theta\) est \( \sin (\theta) = \frac{c\hat{o}t\acute{e} \ oppos\acute{e}}{hypot\acute{e}nuse} \) et son cosinus est \( \frac{c\hat{o}t\acute{e} \ adjacent} {hypot\acute{e}nuse} \).
- Nous étudions ces valeurs car elles sont toujours le même pour le même angle, peu importe les côtés du triangle rectangle.
- Le cercle trigonométrique est un cercle de rayon \(1\) dont le centre est l'origine qui permet de prolonger les définitions du sinus, du cosinus et de la tangente pour des angles négatifs et les angles de plus de \(90 °\).
- Les deux formules trigonométriques plus couramment utilisées sont \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) et \(\cos^2 \theta + \sin^2 \theta = 1\).
- Pour résoudre une équation trigonométrique, il faut appliquer les fonctions arc sinus, arc cosinus et arc tangente, en gardant à l'esprit la périodicité des fonctions trigonométriques.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel