Triangles équilatéraux

Mobile Features AB

Il y a beaucoup d'objets autour de nous qui ont la forme de triangles comme les parts de pizza, le sommet des tours et les toits, et les banderoles d'anniversaire. Mais parfois, nous rencontrons des formes triangulaires qui ont exactement la même apparence quel que soit le sens dans lequel nous les faisons tourner, comme une chips nacho ou des panneaux de signalisation. S'agit-il d'une forme spéciale de triangles ? Sont-ils vraiment égaux dans tous les sens ? Découvrons-le.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Triangles équilatéraux

  • Temps de lecture: 9 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:9 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:9 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    En géométrie, les triangles peuvent être classés en différentes formes en fonction de leurs côtés et de leurs angles. L'une de ces formes est le triangle équilatéral. Dans cette section, nous allons comprendre le concept du triangle équilatéral et voir ses propriétés et les formules qui en découlent.

    Un triangle est équilatéral s'il a trois côtés congruents. En d'autres termes, si les trois côtés d'un triangle sont de même longueur, il s'agit alors d'un triangle équilatéral.

    Le nom équilatéral est donc dérivé de equi, qui signifie égal, et de lateral, qui signifie côtés.

    Triangles équilatéraux, triangle équilatéral avec les mêmes côtés, StudySmarterTriangle équilatéral aux côtés congrus, Mouli Javia - StudySmarter Originals

    Triangles équilatéraux et angles

    Nous pouvons également classer les triangles équilatéraux en fonction de leurs angles.

    Un triangle équilatéral est un triangle dont les trois angles internes sont congruents et égaux à60° .

    Triangles équilatéraux, triangle équilatéral avec les mêmes angles, StudySmarterTriangle équilatéral avec les mêmes angles, Mouli Javia - StudySmarter Originals

    Corollaires sur les triangles équilatéraux

    Jetons un coup d'œil à quelques affirmations importantes concernant les triangles équilatéraux.

    Corollaire 1

    Énoncé: Chaque angle d'un triangle équilatéral est60°.

    Preuve: Pour le prouver, considèreXYZun triangle équilatéral.

    XY=YZ=ZX

    Or, un triangle équilatéral est aussi considéré comme un triangle isocèle. Nous pouvons donc appliquer les propriétés du triangle isocèle au triangle équilatéral. Nous utilisons ici le théorème du triangle isocèle.

    Pour cela, prends :

    XY=YZ et YZ=ZX

    Z=X et X=Y

    X=Y=Z

    Considère maintenant l'une des propriétés d'un triangle, qui stipule que la somme de tous les angles internes d'un triangle est égale à180°:X+Y+Z=180°

    Comme les trois angles sont égaux, nous pouvons nous contenter de considérer l'un d'entre eux au lieu de tous.

    X+X+X=180°

    3X=180°

    X=180°3

    X=60°

    Ainsi , X=Y=Z=60°.

    On peut donc dire qu'un triangle équilatéral est un triangle équilatéral.

    Le théorème du triangle isocèle stipule que les angles opposés aux deux côtés d'un triangle sont égaux si ces deux côtés sont égaux.

    À partir de ce corollaire, on arrive au corollaire suivant.

    Corollaire 2

    Énoncé: Un triangle est équiangulaire si et seulement s'il est équilatéral.

    Propriétés des triangles équilatéraux

    Voici quelques-unes des propriétés des triangles équilatéraux :

    1. Un triangle équilatéral est un polygone régulier car il a trois côtés.

    2. Tous les côtés et les angles des triangles équilatéraux sont congruents.

    3. Une ligne perpendiculaire tracée à partir de n'importe quel sommet d'un triangle équilatéral jusqu'à son côté opposé coupe en deux le côté et l'angle.

    4. Cette ligne perpendiculaire (comme mentionné ci-dessus) est la même ligne pour l'altitude, la médiane, la bissectrice perpendiculaire et la bissectrice de l'angle pour le même côté.

    5. Les lignes de symétrie dans les triangles équilatéraux sont les trois lignes mentionnées de chaque côté.

    6. Dans les triangles équilatéraux, le centroïde, l'orthocentre, le circoncentre et l'incentre se trouvent au même point.

    Rappelle-toi que bissecter signifie diviser ou séparer en deux parties égales.

    Formules pour les triangles équilatéraux

    Discutons de quelques formules relatives aux triangles équilatéraux, y compris le sien :

    • le périmètre
    • Surface
    • Hauteur

    Périmètre d'un triangle équilatéral

    Le périmètre est la somme de tous les côtés. Et comme nous parlons d'un triangle équilatéral, tous les côtés sont égaux. Le périmètre d'un triangle équilatéral est donc égal à trois fois la longueur d'un côté.

    Périmètre d'un triangle équilatéral=3a. Icia est la longueur du côté.

    Nous pouvons en déduire la formule du demi-périmètre. Le demi-périmètre est la moitié du périmètre d'un triangle équilatéral et nous pouvons le calculer comme suit.

    Demi-périmètre d'un triangle équilatéral= 3a2

    Nous utilisons généralement le demi-périmètre pour calculer la surface d'un triangle à l'aide de la formule de Héron.

    Quel est le périmètre du triangle équilatéral donné dont le côté est de 6 cm ? Trouve également son demi-périmètre.

    Triangles, triangle équilatéral, StudySmarterTriangle équilatéral, Mouli Javia - StudySmarter Originals

    Solution : Icia=6cm. En appliquant la formule du périmètre, nous obtenons donc :

    Périmètre d'un triangle équilatéralid="5221779" role="math" = 3a = 3×6 = 18 cm.

    Semi périmètre d'un triangle équilatéralid="5221780" role="math" alt="" =3a2 = 182 =9 cm.

    Surface d'un triangle équilatéral

    L'aire est calculée pour mesurer l'espace occupé par les côtés d'un polygone dans un plan en 2D. La formule pour trouver l'aire d'un triangle équilatéral est la suivante.

    Surface d'un triangle équilatéral= 34a2, oùa est la longueur du côté.

    Nous pouvons également calculer la surface à l'aide de la formule de Héron si un demi-périmètre est donné. La formule de Heron est la suivante.

    Surface d'un triangle équilatéral=s(s-a)3, où a est la longueur du côté et s le demi-périmètre du triangle.

    Calcule l'aire d'un triangle équilatéral dont le côté est de 5 cm.

    Triangles équilatéraux, exemple de triangle équilatéral, StudySmarterTriangle équilatéral, Mouli Javia - StudySmarter Originals

    Solution : Icia=5 cm.

    Aire d'un triangle équilatéral = 34a2

    = 3452

    = 10.83

    Par conséquent, l'aire d'un triangle équilatéral donné est la suivante10.83 cm2.

    Hauteur d'un triangle équilatéral

    La hauteur d'un triangle équilatéral est la distance perpendiculaire entre un sommet de ce triangle et son côté opposé.

    Triangles équilatéraux, hauteur du triangle équilatéral, StudySmarterHauteur d'un triangle équilatéral, Mouli Javia - StudySmarter Originals

    La formule pour calculer la hauteur d'un triangle équilatéral est donnée ci-dessous.

    Hauteur d'un triangle équilatéral= 32a, oùa est la longueur du côté.

    Trouve la hauteur d'un triangle équilatéral dont la longueur du côté est de 15 cm.

    Solution : En utilisant la formule de la hauteur, nous pouvons dire :

    Hauteur d'un triangle équilatéral=32a

    =3214

    =73 = 12.12 cm

    La hauteur (ou l'altitude) d'un triangle équilatéral est donc de 12,12 cm.

    Exemples de triangles équilatéraux

    Nous allons maintenant travailler sur quelques exemples basés sur la théorie ci-dessus.

    Trouve la surface d'un triangle équilatéral dont le périmètre est de 18 cm.

    Solution : Pour trouver la surface d'un triangle équilatéral, nous devons connaître la longueur de ses côtés. Nous allons donc commencer par trouver la longueur des côtés en utilisant le périmètre. Nous savons que la formule du périmètre d'un triangle équilatéral est la suivante3a. Et la valeur du périmètre est également donnée dans la question, à savoir 18 cm.

    18=3a

    a=183 a=6 cm

    Maintenant que nous avons trouvé la longueur du côté, nous pouvons l'utiliser dans la formule de l'aire pour la calculer.

    Surface d'un triangle équilatéral = 34a2

    = 3462

    = 93 = 15.58 cm2

    Par conséquent, un triangle équilatéral dont le périmètre est de 18 cm a une surface de 15,58 cm2.

    Un triangle équilatéral avec deux longueurs de côté est donné. La longueur d'un côté est(3x+8) et celle de l'autre côté est(4x+7). Quelle est la mesure de la longueur du côté de ce triangle équilatéral ? Trouve également le périmètre de ce triangle.

    Solution : Comme le triangle donné est un triangle équilatéral, nous savons que tous ses côtés sont égaux. Les deux longueurs latérales données sont donc égales et les équations peuvent également être égales l'une à l'autre.

    3x+8=4x+7

    Pour déterminer la longueur du côté, nous résolvons l'équation ci-dessus et trouvons la valeur de x.

    4x-3x=8-7x=1

    Maintenant, comme les deux longueurs latérales sont égales, nous substituons la valeur de x à n'importe laquelle des longueurs latérales.

    En remplaçant3x+8nous obtenons

    3x+8 = 31+8 =11.

    Nous pouvons vérifier l'exactitude de la valeur trouvée de x en remplaçant x par les deux longueurs latérales. Si les deux valeurs des longueurs des côtés sont égales, la valeur de x est correcte. Voyons ce qu'il en est dans notre cas. Nous avons déjà trouvé la valeur de l'un des côtés. Trouvons l'autre longueur de côté et comparons-la.

    En remplaçant x par 4x+7Par conséquent, comme les deux valeurs de la longueur du côté sont égales, la valeur de x que nous avons calculée est correcte !

    Maintenant que nous connaissons la longueur des côtés, nous pouvons facilement calculer le périmètre du triangle équilatéral.

    Périmètre d'un triangle équilatéral=3a. Icia=11.

    3a = 3(11) = 33.

    Le périmètre du triangle équilatéral donné est donc de 33 cm.

    Triangles équilatéraux - Principaux enseignements

    • Un triangle est équilatéral s'il a trois côtés congruents.
    • Un triangle équilatéral est un triangle dont les trois angles internes sont congruents et égaux à60° .
    • Un triangle est équiangulaire si et seulement s'il est équilatéral.
    • Le périmètre d'un triangle équilatéral est3a.
    • Le demi-périmètre d'un triangle équilatéral est 3a2.
    • La surface d'un triangle équilatéral est34a2.
    • L'aire d'un triangle équilatéral (en utilisant la formule de Heron) est ss-a3.
    • La hauteur d'un triangle équilatéral est32a.
    Questions fréquemment posées en Triangles équilatéraux
    Qu'est-ce qu'un triangle équilatéral?
    Un triangle équilatéral est un triangle où les trois côtés ont la même longueur.
    Comment calculer l'aire d'un triangle équilatéral?
    Pour calculer l'aire, utilisez la formule: Aire = (√3/4) * côté².
    Quels sont les angles dans un triangle équilatéral?
    Dans un triangle équilatéral, chaque angle mesure 60 degrés.
    Pourquoi les triangles équilatéraux sont-ils importants?
    Les triangles équilatéraux sont importants car ils sont réguliers et apparaissent fréquemment en géométrie et en architecture.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Tous les angles d'un triangle équilatéral sont-ils égaux ?

    Quel est le périmètre d'un triangle équilatéral si la mesure de l'un de ses côtés est de 4 cm ?

    Laquelle des affirmations suivantes est correcte ?

    Suivant
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 9 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !