Sauter à un chapitre clé
Parallélogramme d'un sac à main et d'une boîte à emporter, StudySmarter Originals
Maintenant, remarque que les bases du sac à main et de la boîte à emporter sont parallèles à leurs sommets. Comme cette forme a quatre côtés, elle est classée dans la catégorie des quadrilatères. Cependant, ce n'est ni un carré, ni un rectangle, ni un parallélogramme. Ces formes ont deux paires de côtés parallèles alors que la forme décrite par ce sac à main et cette boîte à emporter n'en a qu'une seule. As-tu une idée de ce que pourrait être cette forme ? Je vais te donner un indice : il s'agit d'un trapèze.
Cet article explore la définition d'un trapèze ainsi que ses caractéristiques et ses types. Nous examinerons également les formules utilisées pour trouver le périmètre et l'aire d'un trapèze.
Qu'est-ce qu'un trapèze ?
Comme nous l'avons déjà mentionné, un trapèze fait partie de la catégorie des quadrilatères puisqu'il comporte quatre côtés. Ce type particulier de quadrilatère a en fait deux noms : un trapèze et un trapézoïde. Le nom varie selon l'endroit où tu te trouves dans le monde. Ici, aux États-Unis, on l'appelle généralement un trapèze. En revanche, au Royaume-Uni, on l'appelle généralement un trapèze. C'est intéressant, non ? En gardant cela à l'esprit, commençons notre discussion par la définition d'un trapèze.
Un trapèze est un quadrilatère dont les côtés sont parallèles.
Tu trouveras ci-dessous une représentation graphique d'un trapèze. Nous appellerons ce trapèze ABCD.
Illustration d'un trapèze, StudySmarter Originals
Nous allons maintenant passer à l'énumération des propriétés d'un trapèze. Ce faisant, nous pourrons observer à quel point elles sont différentes de celles d'un quadrilatère régulier.
Caractéristiques d'un trapèze
Revenons maintenant à notre trapèze ABCD ci-dessus. Il existe plusieurs caractéristiques notables des trapèzes avec lesquelles nous devrions nous familiariser. Elles sont énumérées ci-dessous.
Un trapèze a une paire de côtés parallèles et une paire de côtés non parallèles ;
Habituellement, les bases (le haut et le bas) de ABCD sont parallèles l'une à l'autre. Cela peut s'écrire AD // BC ;
D'après la définition d'un trapèze.
Une paire d'angles adjacents formés entre un côté parallèle et un côté non parallèle d'un trapèze s'additionne à 180°. Ici, ∠ABC + ∠BAD = 180° et ∠BCD + ∠ADC = 180° ;
La somme des angles intérieurs d'un trapèze est de 360° ;
Les diagonales d'un trapèze se coupent en deux ;
La médiane (ligne médiane ou segment médian) d'un trapèze est parallèle aux deux bases. Elle est représentée par la ligne rose ci-dessous ;
Médiane d'un trapèze, StudySmarter Originals
La médiane (ou segment médian) d'un trapèze est le segment de droite reliant les points médians des deux côtés non parallèles d'un trapèze.
La longueur de la médiane est la moyenne des deux bases. Disons que a = AD et b = BC, alors où m est la médiane.
Former d'autres quadrilatères à partir de trapèzes
Il existe trois types de quadrilatères qui peuvent découler d'un trapèze, à savoir un parallélogramme, un carré et un rectangle. Ces cas sont décrits dans le tableau ci-dessous.
Type de quadrilatère | Description du quadrilatère |
Parallélogramme Parallélogramme, StudySmarter Originals |
|
Carré Carré, StudySmarter Originals |
|
Rectangle Rectangle, StudySmarter Originals |
|
Types de trapèzes
Il existe cinq types de trapèzes à considérer, à savoir
Trapézoïde scalène
Trapèze isocèle
Trapèze droit
Trapèze obtus
Trapèze aigu
Le tableau ci-dessous décrit chacun de ces trapèzes à tour de rôle, ainsi que leur représentation picturale et leurs caractéristiques distinctes.
Type de trapèze | Représentation picturale | Description du trapézoïde |
Trapèze scalène | Trapèze scalène, StudySmarter Originals | Un trapèze dont les côtés et les angles ne sont pas de même mesure. |
Trapèze isocèle | Trapèze isocèle, StudySmarter Originals | Un trapèze dont les côtés opposés ont la même longueur. Habituellement, il est représenté par les côtés (ou pattes) non parallèles d'un trapèze. Les angles des côtés parallèles (ou bases) sont égaux entre eux.
|
Trapèze droit | Trapèze droit, StudySmarter Originals | Un trapèze avec deux angles droits adjacents (égaux à 90o). |
Trapèze obtus | Trapèze obtus, StudySmarter Originals | Un trapèze avec deux angles obtus opposés (plus de 90o). |
Trapèze aigu | Trapèze aigu, StudySmarter Originals | Un trapèze avec deux angles aigus adjacents (moins de 90o). |
Le périmètre d'un trapèze
Un trapèze est un polygone à deux dimensions qui se trouve sur un plan à deux dimensions. Le périmètre d'un trapèze est décrit comme la longueur totale de ses limites. En d'autres termes, c'est la somme de tous ses côtés. Disons que nous avons un trapèze ABCD dont les côtés sont a, b, c et d.
Le périmètre d'un trapèze, StudySmarter Originals
La formule du périmètre d'un trapèze est donc la suivante
P = a + b + c + d,
où P est le périmètre, a = AB, b = BC, c = CD et d = AD. Cette formule peut également s'écrire comme suit
P = AB + BC + CD + AD.
Exemples utilisant la formule du périmètre d'un trapèze
Voyons maintenant quelques exemples de travail impliquant la formule pour trouver le périmètre d'un trapèze.
Étant donné le trapèze ci-dessous, trouve son périmètre.
Exemple 1, StudySmarter Originals
Solution
Pour trouver le périmètre de ce trapèze, il suffit d'additionner les mesures des quatre côtés.
Ainsi, le périmètre de ce trapèze est de 87 unités.
Un trapèze isocèle a un périmètre de 35 unités. Quelle est la longueur de chaque côté opposé (égal) étant donné que les bases sont respectivement de 5 unités et de 8 unités ?
Solution
Ici, on nous donne le périmètre d'un trapèze et les longueurs des bases. On nous dit également que ce trapèze est un trapèze isocèle, ce qui signifie qu'il y a une paire de côtés opposés égaux. Nous appellerons ces deux côtés identiques par x.
Exemple 2, StudySmarter Originals
Comme le périmètre est la somme des quatre côtés de ce trapèze, nous pouvons l'écrire sous la forme de l'équation ci-dessous.
En réarrangeant cette équation, nous obtenons
En simplifiant, on obtient
Ainsi, la valeur de chaque côté opposé est de 11 unités.
L'aire d'un trapèze
La surface d'un trapèze est définie par l'espace compris dans ses limites. On la trouve en calculant la longueur moyenne entre deux côtés parallèles donnés et en multipliant ce produit par la hauteur du trapèze. Observe l'illustration du trapèze ABCD ci-dessous.
Surface d'un trapèze, StudySmarter Originals
Ici, les bases sont a = BC et b = AD. La hauteur est indiquée par la lettre h.
La hauteur h d'un trapèze se trouve à une distance perpendiculaire entre les bases a et b. On l'appelle aussi l'altitude d'un trapèze.
Ainsi, l'aire d'un trapèze est
,
où A = aire, a = longueur de la base la plus courte, b = longueur de la base la plus longue et h = hauteur. De même, nous pouvons exprimer cette formule comme suit
.
Exemples d'application de la formule de l'aire d'un trapèze
Voyons maintenant quelques exemples d'application de la formule de l'aire d'un trapèze.
Identifie l'aire du trapèze suivant.
Exemple 3, StudySmarter Originals
Solution
Ici ,
a = 6 unités ;
b = 8 unités ;
h = 5 unités.
Ne te laisse pas déconcerter par les deux autres côtés donnés ! Ils ne sont pas parallèles l'un à l'autre et nous ne pouvons donc pas utiliser leurs mesures dans notre formule.
Maintenant, en utilisant la formule de l'aire d'un trapèze, nous obtenons
En simplifiant, nous obtenons la réponse finale suivante
L'aire de ce trapèze est donc de 35 unités2.
Trouve la longueur de la base la plus courte d'un trapèze étant donné que la surface est de 232 unités2, la hauteur est de 16 unités et la longueur de la base la plus longue est de 17 unités.
Solution
Dans ce cas,
A = 232 unités2
b = 17 unités ;
h = 16 unités.
En substituant ces valeurs dans notre formule, nous obtenons
En résolvant ce problème, on obtient
En développant cette équation, nous obtenons
En réarrangeant cette équation et en résolvant pour a, nous obtenons la réponse finale suivante.
Par conséquent, la longueur de la base la plus courte de ce trapèze est de 12 unités.
Exemple concernant les trapèzes
Nous allons terminer ce sujet avec un exemple qui englobe tout ce que nous avons appris tout au long de cette discussion.
Étant donné le trapèze ABCD ci-dessous, détermine son type, son périmètre et son aire.
Exemple 4, StudySmarter Originals
Solution
Type de trapèze
Déduisons d'abord de quel type de trapèze il s'agit. En regardant le diagramme ci-dessus, observe que ∠BAD = 103o et ∠BCD = 118o. Ces deux angles sont supérieurs à 90o et sont situés à l'opposé l'un de l'autre. Nous avons donc un trapèze obtus.
Périmètre
Ensuite, nous allons trouver le périmètre de ce trapèze. En additionnant les quatre côtés de ce trapèze, nous obtenons
Le périmètre de ce trapèze est donc de 70 unités.
Surface
Ici, BC (base la plus courte) est parallèle à AD (base la plus longue). La hauteur est perpendiculaire à ces deux bases. Ainsi ,
a = 16 unités ;
b = 22 unités ;
h = 11 unités.
En appliquant la formule de l'aire d'un trapèze, on obtient : a = 16 unités ; b = 22 unités ; h = 11 unités.
L'aire de ce trapèze est donc de 209 unités2.
Question bonus
Quelle est la valeur de l'angle ∠ADC sachant que ∠ABC = 88o?
Par la propriété des trapèzes, la somme de ses angles intérieurs s'élève à 360°. Puisque nous avons les mesures de trois angles, nous pouvons trouver la valeur de l'angle manquant ci-dessous.
En réarrangeant cela et en résolvant pour l'angle inconnu, nous obtenons.
Par conséquent, l'angle ∠ADC est de 51o.
Trapézoïdes - Points clés
- Un trapèze est un quadrilatère dont les côtés sont parallèles.
- Il existe 5 types de trapèzes : scalène, isocèle, droit, obtus et aigu.
- Le périmètre d'un trapèze est donné par P = a + b + c + d.
- L'aire d'un trapèze est donnée par .
Apprends avec 0 fiches de Trapèzes dans l'application gratuite StudySmarter
Tu as déjà un compte ? Connecte-toi
Questions fréquemment posées en Trapèzes
À propos de StudySmarter
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.
En savoir plus