Parallélogrammes

Pense aux marques d'un passage zébré. Ce sont des formes fermées à 4 côtés dont les côtés opposés sont égaux et parallèles. Ces formes sont appelées parallélogrammes.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement
Des millions de fiches spécialement conçues pour étudier facilement

Upload Icon

Create flashcards automatically from your own documents.

   Upload Documents
Upload Dots

FC Phone Screen

Need help with
Parallélogrammes?
Ask our AI Assistant

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Parallélogrammes

  • Temps de lecture: 6 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Une figure plane à quatre côtés est appelée quadrilatère. Dans cet article, nous allons examiner le type particulier de quadrilatère connu sous le nom de parallélogramme.

    Définition d'un parallélogramme

    Un quadrilatère ayant deux paires de côtés parallèles opposés s'appelle un parallélogramme.

    Nous savons qu'un quadrilatère a 4 côtés. Dans un parallélogramme, ces 4 côtés sont constitués de 2 paires de côtés parallèles opposés.

    Le schéma suivant illustre un parallélogramme.

    Exemple de parallélogramme - StudySmarterFig. 1 : Illustration d'un parallélogramme.

    Dans la figure ci-dessus :

    • AB // CD
    • AC // BD

    Propriétés des parallélogrammes

    En plus de ce qui précède, nous pouvons identifier diverses propriétés des parallélogrammes.

    Nous utiliserons le parallélogramme ABDC suivant, dont les diagonales sont d1=BC et d2=AD, pour illustrer ces propriétés.

    Propriétés du parallélogramme diagonales - StudySmarterFig. 2 : Parallélogramme avec les diagonales d1 et d2.

    • Dans un parallélogramme, les côtés opposés sont égaux.

      Cela signifie que dans le parallélogramme ci-dessus, AB=CD et AC=BD.

    • Dans un parallélogramme, les angles opposés sont égaux.

      Cela signifie que dansle parallélogramme ci-dessus, ∠CAB=∠CDB et ∠ACD=∠ABD .

    • Dans un parallélogramme, les angles consécutifs sont complémentaires.

      Dans n'importe quel parallélogramme, tu peux identifier 4 paires d'angles consécutifs. Ceux-ci sont toujours complémentaires (ce qui signifie que la somme des angles est égale à 180 degrés). Dans le parallélogramme ci-dessus :

      ∠CAB + ∠ABD = 180,

      ∠ABD + ∠BDC = 180,

      ∠BDC + ∠DCA = 180,

      ∠DCA + ∠CAB = 180.

    • Si n'importe quel angle d'un parallélogramme est un angle droit, cela signifie que les 4 angles internes sont tous des angles droits.

      C'est une conséquence directe de la propriété ci-dessus. Si un angle quelconque dans un parallélogramme est un angle droit, alors l'angle adjacent est 180-90=90 (selon la propriété ci-dessus). À son tour, l'angle adjacent suivant sera un angle droit et ainsi de suite. Par conséquent, dans n'importe quel parallélogramme, si tu identifies n'importe quel angle comme étant un angle droit, tu peux directement conclure que les 4 angles sont des angles droits.

    • Les diagonales d'un parallélogramme se coupent en deux.

      Dans le parallélogramme ci-dessus, le point O est le milieu des diagonales d1 et d2.

    • Chaque diagonale d'un parallélogramme sépare le parallélogramme en deux triangles congruents.

      Dans le parallélogramme ci-dessus, la diagonale d1 diviserait le parallélogramme en deux triangles congruents, ΔABC et ΔBCD. De même, la diagonale d2 diviserait le parallélogramme en deux triangles congruents, ΔABD et ΔACD.

    Aire des parallélogrammes

    Considère le parallélogramme suivant :

    Surface du parallélogramme - StudySmarterFig. 3 : Parallélogramme avec une base b et une hauteur h.

    L'aire d'un parallélogramme est donnée par la formule :

    Surface = b × h

    où b = base, h = hauteur

    Maintenant, la valeur, b, est la longueur du côté AB, qui est considéré comme la base ici. Par convention, l'un des côtés les plus longs du parallélogramme est considéré comme la base. La valeur h est la hauteur du parallélogramme. On l'appelle aussi parfois l'altitude. La hauteur est la longueur de la ligne reliant la base à son côté opposé. La hauteur est perpendiculaire à la base.

    Parallélogramme : Exemples de problèmes

    Dans cette section, nous explorons des exemples de problèmes mathématiques que tu peux rencontrer à propos des parallélogrammes et de leurs propriétés.

    Un parallélogramme dont la base est de 8 pieds a une surface de 20 pieds carrés. Quelle est la hauteur du parallélogramme ?

    Dans le parallélogramme suivant, ∠ABD = 47°, ∠CBD = 72°. Trouve ∠CDA.

    Propriétés des parallélogrammes Exemple de parallélogramme StudySmarterFig. 4. Illustration d'un parallélogramme.

    ∠ABC = ∠ABD + ∠CBD

    = 47 + 72 = 119.

    Les angles opposés d'un parallélogramme sont égaux. D'où ,

    ∠CDA = ∠ABC = 119°.

    Différents types de formes de parallélogrammes

    Dans cette section, nous allons identifier 3 types particuliers de parallélogrammes, chacun ayant ses propres caractéristiques et propriétés :

    1. Losange

    2. Rectangle

    3. Carré

    Losange

    Un losange est un quadrilatère dont les 4 côtés sont de longueur égale(équilatéral). Il s'avère que les paires de côtés opposés d'un losange sont toujours parallèles. Cela fait de chaque losange un parallélogramme. Inversement, on peut dire qu'un parallélogramme équilatéral est un losange. Les diagonales d'un losange se coupent toujours à angle droit.

    Comme un losange est un type particulier de parallélogramme, il présente également toutes les propriétés d'un parallélogramme.

    Rectangle

    Un rectangle est un parallélogramme dont tous les angles internes sont des angles droits. Comme tous les angles d'un rectangle sont égaux, il est équiangulaire.

    Comme le rectangle est un type particulier de parallélogramme, il présente également toutes les propriétés d'un parallélogramme.

    Carré

    Un carré est un quadrilatère dont les 4 côtés sont égaux et dont tous les angles sont des angles droits. Cela fait du carré un type de parallélogramme, un type de losange et un type de rectangle ! Ainsi, un carré présente toutes les propriétés des parallélogrammes, des losanges et des rectangles.

    Parallélogrammes - Points clés à retenir

    • Un quadrilatère ayant deux paires de côtés parallèles opposés s'appelle un parallélogramme.
    • Dans un parallélogramme, les côtés opposés sont égaux.
    • Dans un parallélogramme, les angles opposés sont égaux.
    • Dans un parallélogramme, les angles consécutifs sont complémentaires.
    • Si un angle quelconque d'un parallélogramme est un angle droit, cela signifie que les 4 angles internes sont des angles droits.
    • Les diagonales d'un parallélogramme se coupent en deux.
    • Chaque diagonale d'un parallélogramme sépare le parallélogramme en deux triangles congruents.
    • L'aire d'un parallélogramme est donnée par la formule :

      Surface = b × h

      où b = base, h = hauteur

    • Un losange est un parallélogramme dont les 4 côtés sont égaux.

    • Un rectangle est un parallélogramme dont tous les angles internes sont des angles droits.

    • Un carré est un parallélogramme avec 4 côtés égaux et tous les angles droits.

    Questions fréquemment posées en Parallélogrammes
    Qu'est-ce qu'un parallélogramme ?
    Un parallélogramme est un quadrilatère avec des côtés opposés parallèles et de même longueur.
    Comment prouver qu'une figure est un parallélogramme ?
    Pour prouver qu'une figure est un parallélogramme, montrez que les côtés opposés sont parallèles et égaux, ou que les diagonales se coupent en leur milieu.
    Quelles sont les propriétés d'un parallélogramme ?
    Les propriétés d'un parallélogramme incluent des côtés opposés égaux et parallèles, des angles opposés égaux, et des diagonales qui se coupent en leur milieu.
    Quelle est la formule pour l'aire d'un parallélogramme ?
    La formule pour l'aire d'un parallélogramme est base × hauteur.
    Sauvegarder l'explication

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 6 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !