Médiane

Supposons que tu doives partager la dernière part de gâteau avec ton frère. Et aucun de vous deux ne veut avoir un morceau plus petit. Pour éviter la bagarre entre toi et ton frère pour un gâteau, ta mère coupe le morceau de gâteau triangulaire à partir de sa médiane pour que vous ayez tous les deux la même taille de gâteau. Mais quelle est cette médiane ? Comment ta mère a-t-elle décidé où couper le gâteau ?

C'est parti

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Médiane

  • Temps de lecture: 12 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Nous définissons la médiane d'un triangle comme le segment de droite reliant le sommet au milieu de son côté opposé. Dans cet article, nous allons passer en revue la définition d'une médiane, ses différentes propriétés, la formule mathématique & enfin travailler sur quelques exemples.

    À la fin de cet article, tu seras capable de :

    • Définir une médiane et la relier à l'aire d'un triangle.

    • Identifier et dessiner les médianes dans un triangle.

    • Calculer la longueur de la médiane à partir des côtés et des coordonnées d'un triangle.

    Signification de la médiane

    Alors, que signifie exactement la médiane ? Imagine que tu as une part de pizza que tu dois partager entre toi et ton ami. Pour simplifier, nous appellerons cette pizza \(\Ngrand triangle en haut de l'ABC\N). Maintenant, garde à l'esprit que tu dois diviser la pizza de façon égale entre tes amis. C'est ici que la médiane peut t'aider.

    Médiane, Médiane d'un triangle, StudySmarterMédiane d'une part de pizza, pexels.com

    Choisis un côté de la pizza, dis le côté \(a\) (c'est-à-dire le côté \(BC\)), et coupe la pizza en travers du segment de droite joignant le point médian de la droite et l'angle intérieur opposé, comme le montre la figure ci-dessous. Hourra ! Ton ami et toi pouvez maintenant déguster des quantités égales de pizza. La ligne imaginaire qui a coupé la pizza en deux parties égales est la médiane . Puisque tous les triangles ont \(3\) côtés et \(3\) angles intérieurs, ils auront toujours \(3\) côtés et \(3\) angles intérieurs. Ils auront toujours des médianes \(3\).

    Une médiane est uneligne construite qui relie le point médian d 'un côté à l'angle intérieur opposé.

    Il est intéressant de noter que le périmètre d'un triangle est toujours plus grand que la somme de ses trois médianes.

    Qu'est-ce qu'un centroïde ?

    Maintenant que nous savons ce qu'est une médiane, explorons ce qu'est un centroïde. Le point où les 3 médianes se croisent s'appelle le centroïde. Le centroïde est un point de convergence. Un point de concordance est un point où deux ou plusieurs lignes se croisent. Comme le point d'intersection des médianes, des bissectrices perpendiculaires et des altitudes. Le centroïde se trouvera toujours à l'intérieur du triangle, contrairement aux autres points de concomitance.

    Le point d'intersection des trois médianes est appelé le centroïde.

    Médiane, Centroïde d'un triangle, StudySmarterFig. 1. Trois médianes avec le centroïde comme point d'intersection.

    Le centroïde possède quelques propriétés intéressantes. Il divise toujours la médiane dans un rapport \(2:1\). Le centroïde est toujours situé aux deux tiers de la médiane à partir de l'angle intérieur.

    • Entre le centroïde et l'angle intérieur se trouvent deux parties de la médiane.

    • Entre le centroïde et le côté opposé se trouve le reste de la médiane.

    Visualisons comment la médiane est divisée dans un rapport de \(2:1\). Prends un \(\Ngrand triangle en haut de ABC\N) et dessine les \N(3\N) médianes à partir de chacun des sommets. Considère maintenant que le centre du triangle est \N O\N O\N O\N O\N O\N O\N O\N O\N O\N O\N. Si \(AM\) est la médiane du triangle à partir du sommet \(A\), alors \(2OM = OA\).

    Médiane, Le centroïde divise la médiane, StudySmarterFig. 2. Le centroïde divise la médiane en parties de \(2:1\).

    Dans un triangle rectangle, la médiane tracée à partir du sommet de l'angle droit est égale à la moitié de la longueur de l'hypoténuse du triangle. La médiane de l'angle droit du triangle coupe l'hypoténuse en deux parties égales et chaque partie de l'hypoténuse est égale à la longueur de la médiane.

    Médiane, Médiane du triangle droit, StudySmarterFig. 3. Médiane égale à la moitié de l'hypoténuse.

    Dans la figure ci-dessus, la médiane \(AD\) coupe l'hypoténuse en deux parties égales \(CD\) et \(BD\), de telle sorte que \(AD=CD ; AD=BD\).

    Propriétés de la médiane

    Les propriétés d'une médiane peuvent être décrites comme suit :

    • Tout triangle contient 3 médianes dont le point d'intersection est appelé le centroïde.

    • Le côté de raccordement de la médiane est divisé en deux parties égales.

    • Deux triangles de taille et d'aire égales sont formés en construisant une médiane à partir de n'importe lequel des sommets d'un triangle.

    • En fait, tout triangle est divisé en 6 triangles plus petits de surface égale par 3 médianes du triangle.

    Médiane et altitude d'un triangle

    Il peut être difficile de faire la distinction entre la médiane et l'altitude d'un triangle et il est facile de les considérer comme identiques. Mais la médiane et l'altitude d'un triangle sont deux éléments différents d'un triangle. La médiane d'un triangle est un segment de droite allant d'un sommet au milieu du côté opposé. Alors que l'altitude d'un triangle est un segment de droite perpendiculaire allant d'un sommet à son côté opposé.

    Médiane, médiane et altitude d'un triangle, StudySmarterFig. 4. Médiane et altitude des triangles.

    Dans la figure ci-dessus, \N(AD, BE,\N) et \N(CF\N) sont les médianes du triangle \N(\Ngrand triangleup ABC\N), et \N(XM, YN,\N) et \N(ZO\N) sont les altitudes du triangle \N(\Ngrand triangleup XYZ\N).

    Différence entre médiane et altitude

    Voyons la différence entre la médiane et l'altitude d'un triangle.

    MédianeAltitude
    • Une médiane est un segment de droite allant du milieu d'un côté à son sommet opposé.
    • Une altitude est un segment de droite perpendiculaire formé à partir d'un côté jusqu'à son point de sommet opposé.
    • Un triangle possède 3 médianes dont le point d'intersection est appelé le centroïde.
    • Un triangle a 3 altitudes avec un point d'intersection appelé orthocentre.
    • Les 3 médianes se trouvent toutes à l'intérieur du triangle, quelle que soit sa forme.
    • L'altitude peut être située ou non à l'intérieur du triangle en fonction de la forme.
    • Une médiane divise un triangle en deux triangles plus petits de même surface.
    • Une altitude divise un triangle en deux triangles plus petits, mais leur surface peut être différente.

    Formule de calcul de la médiane du triangle

    Une formule de base peut être utilisée pour calculer la médiane d'un triangle. Examinons la formule de la médiane du triangle pour calculer la longueur de chaque médiane.

    Médiane, Médiane d'un triangle, StudySmarterFig. 5. Trois médianes d'un triangle.

    La formule pour la première médiane est la suivante :

    \[m_a=\sqrt{\frac{2b^{2}+2c^{2}-a^{2}}{4}}\]

    où \(a, b,\N) et \N(c\N) sont les longueurs des côtés, et \N(m_a\N) est la médiane de l'angle intérieur \N(A\N) au côté \N('a'\N).

    La formule pour calculer la deuxième médiane d'un triangle est la suivante :

    \[m_b=\sqrt{\frac{2c^{2}+2a^{2}-b^{2}}{4}}\]

    où la médiane du triangle est \N(m_b\N), les côtés sont \N(a, b,\N) et \N(c\N), et la médiane est formée sur le côté \N('b'\N).

    De même, la formule pour la troisième médiane d'un triangle est la suivante :

    \[m_c=\sqrt{\frac{2a^{2}+2b^{2}-c^{2}}{4}}\]

    où la médiane du triangle est \N(m_c\N), les côtés du triangle sont \N(a, b,\N) et \N(c\N), et la médiane est formée sur le côté \N('c'\N).

    Mais alors, comment calculer la longueur en utilisant seulement les coordonnées du triangle ? Nous estimons d'abord les points médians du côté avec la médiane à l'aide de la formule ci-dessous.

    Médiane, Formule médiane, StudySmarterFig. 6. Triangle avec point médian et médiane.

    \[M(x_m, y_m)=\frac{(x_2+x_3)}{2}, \frac{(y_2+y_3)}{2}\]

    où \(M(x_m,y_m)\) est l'un des points d'extrémité de la médiane. En utilisant ces coordonnées et le point restant, nous pouvons calculer la longueur de la médiane. Les coordonnées doivent être remplacées par la formule suivante. Il s'agit de la formule de la distance, qui donne la distance entre deux coordonnées quelconques sur un plan à deux dimensions.

    \[D=\sqrt{(x_m-x_1)^2+(y_m-y_1)^2}\]

    où \(D\) est la distance entre les deux points et \((x_1,y_1) , (x_m,y_m)\) sont les coordonnées des extrémités de la médiane.

    De même, pour calculer la distance entre \((x_2,y_2)\) et le point médian du côté opposé \(AC\), nous utilisons,

    \[D=\sqrt{(x_m-x_2)^2+(y_m-y_2)^2}\]

    où \(M(x_m, y_m)=\frac{(x_1+x_3)}{2}, \frac{(y_1+y_3)}{2}\).

    Et la distance entre \((x_3,y_3)\) et le point médian du côté opposé \(AB\) est calculée en utilisant,

    \[D=\sqrt{(x_m-x_3)^2+(y_m-y_3)^2}\]

    où \(M(x_m, y_m)=\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2}\).

    Exemples de médianes

    Jetons un coup d'œil à quelques exemples de médianes et comprenons-les.

    Trouve la longueur de la médiane du triangle donné \N(ABC\N) dont les côtés sont donnés comme suit, \N(AB = 10\N, unités), \N(BC = 6\N, unités), et \N(AC = 8\N, unités), respectivement, dans lequel AM est la médiane formée sur le côté \N(BC\N).

    Médiane, médiane des exemples de triangles, StudySmarterFig. 7. Triangle avec les longueurs des côtés.

    Solution :

    \[AM=\sqrt{\frac{2AB^2+2AC^2-BC^2}{4}}\]

    où \N(AB=10, BC=6, AC=8\N)

    En substituant les valeurs dans la formule, nous obtiendrons, en médiane, \(AM\),

    \[AM=\sqrt{\frac{(2\times 10^2)+(2\times 8^2)-6^2}{4}} = 8.54\]

    Par conséquent, la longueur de la médiane \N(AM\N) est \N(8,54 \N;unités).

    Trouve la longueur de la médiane (AM) si les coordonnées du triangle (ABC) sont données comme suit : A (2,5), B (6,3), C (-3,0).

    Médiane, médiane des exemples de triangles, StudySmarterFig. 8. Triangle avec coordonnées.

    Solution :

    Étape 1 : Calcule les coordonnées du point médian pour \(BC\)

    \begin{align}M(x,y)&=\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2} \\N-&=\frac{(6+(-3))}{2}, \frac{3+0}{2} \\N-&=(1.5, 1.5)\N- end{align}

    Étape 2 : Maintenant que nous avons les coordonnées des extrémités de la médiane, nous pouvons estimer la longueur à l'aide de la formule de la distance.

    \begin{align} xml-ph-0000@deepl.internal d&=\sqrt{(1.5-2)^2+(1.5-5)^2} \\N-&=\sqrt{(-0.5)^2+(-3.5)^2} \N-&=\sqrt{12.5} \\N-&=3.53\N- end{align}

    Cela nous donne la longueur de l'unité \(3,53\).

    Ceci nous amène à la fin de l'article. Voici les principaux points à retenir pour rafraîchir ce que nous avons appris jusqu'à présent.

    Médiane - Points clés

      • La médiane est un segment de droite joignant le sommet et le milieu du côté opposé.
      • Elle divise le côté opposé en deux parties égales en lebisectant .
      • La médiane divise le triangle en deux triangles d'aires égales. Les \(3\) médianes diviseront le triangle en \(6\) triangles égaux.
      • Chaque triangle a trois médianes, le point d'intersection des médianes est appelé le centroïde.
      • La longueur de la médiane peut être calculée à l'aide de la formule : \[m_a=\sqrt{\frac{2b^{2}+2c^{2}-a^{2}}{4}}\].
      • La longueur peut également être calculée à l'aide des coordonnées des triangles en utilisant la formule de la distance et les points médians du côté opposé. \(M(x_m, y_m)=\frac{(x_2+x_3)}{2}, \frac{(y_2+y_3)}{2}\), où M est le point médian \(D=\sqrt{(x_m-x_1)^2+(y_m-y_1)^2}\), où \(D\) est la distance.
    Questions fréquemment posées en Médiane
    Qu'est-ce que la médiane en mathématiques?
    La médiane en mathématiques est la valeur qui sépare un ensemble de données en deux moitiés égales, avec 50% des valeurs au-dessus et 50% des valeurs en dessous.
    Comment calculer la médiane?
    Pour calculer la médiane, triez les données par ordre croissant et trouvez la valeur centrale. Si le nombre d'éléments est pair, prenez la moyenne des deux valeurs centrales.
    Quelle est la différence entre moyenne et médiane?
    La différence entre médiane et moyenne est que la médiane est la valeur centrale des données triées, tandis que la moyenne est la somme des valeurs divisée par le nombre d'éléments.
    Quand utiliser la médiane plutôt que la moyenne?
    Utilisez la médiane plutôt que la moyenne lorsque les données contiennent des valeurs extrêmes ou des outliers, car la médiane est moins affectée par ces valeurs.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Lequel n'est pas une propriété de la médiane ?

    Vrai/Faux : Les 3 médianes d'un triangle auront toujours la même longueur.

    Comment appelle-t-on le point où les médianes se rejoignent ?

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 12 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !