CCC et CAC

Mobile Features AB

As-tu pensé à te faciliter la vie ? Qui ne l'a pas fait, au moins à certaines occasions, n'est-ce pas ? Souvent, pour se faciliter la vie, il suffit de réduire une action à des techniques applicables rapidement et faciles à retenir, et de les apprendre.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quand utilises-tu SSS et SAS ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Trois triangles sont donnés. Les côtés du premier triangle sont tous égaux aux côtés respectifs du deuxième triangle. Deux côtés et l'angle intermédiaire du troisième triangle sont égaux aux deux côtés et à l'angle respectifs du deuxième triangle. Coche toutes les affirmations qui sont correctes :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux triangles rectangles sont donnés. Les deux jambes du premier triangle rectangle sont égales à celles du deuxième triangle. Coche toutes les affirmations qui sont correctes :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

SAS et SSS sont tous deux des théorèmes permettant de prouver la congruence des triangles. Ces théorèmes peuvent être utilisés sur :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Peut-on utiliser SSS et SAS pour prouver la congruence entre plus de deux triangles ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux triangles sont donnés. Le premier triangle a un côté de 5 cm de long et l'autre de 7 cm de long. Ils forment tous deux un angle de 40o.Le deuxième triangle a également deux côtés de même longueur formant un angle de 40o.Ces triangles sont-ils congruents ? Si oui, quel théorème peut être utilisé pour prouver la congruence ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux triangles sont donnés. Le premier triangle a un côté de 5 cm de long et l'autre de 4 cm de long. Ils forment tous deux un angle de 60o.Le deuxième triangle a également deux côtés de même longueur formant un angle de 61o.Ces triangles sont-ils congruents ? Si oui, quel théorème peut être utilisé pour prouver la congruence ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu prouves que deux triangles sont congruents à l'aide de la SSS, cela signifie-t-il qu'ils auront également des surfaces égales ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu prouves que deux triangles sont congruents à l'aide de SAS, cela signifie-t-il qu'ils auront également des périmètres égaux ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'utilisation de SSS et SAS signifie-t-elle que tu n'auras pas besoin de prendre des mesures pour prouver la congruence ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si l'on te donne deux triangles et qu'ils ont chacun deux côtés égaux, cela signifie-t-il que ces triangles sont congruents ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quand utilises-tu SSS et SAS ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Trois triangles sont donnés. Les côtés du premier triangle sont tous égaux aux côtés respectifs du deuxième triangle. Deux côtés et l'angle intermédiaire du troisième triangle sont égaux aux deux côtés et à l'angle respectifs du deuxième triangle. Coche toutes les affirmations qui sont correctes :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux triangles rectangles sont donnés. Les deux jambes du premier triangle rectangle sont égales à celles du deuxième triangle. Coche toutes les affirmations qui sont correctes :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

SAS et SSS sont tous deux des théorèmes permettant de prouver la congruence des triangles. Ces théorèmes peuvent être utilisés sur :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Peut-on utiliser SSS et SAS pour prouver la congruence entre plus de deux triangles ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux triangles sont donnés. Le premier triangle a un côté de 5 cm de long et l'autre de 7 cm de long. Ils forment tous deux un angle de 40o.Le deuxième triangle a également deux côtés de même longueur formant un angle de 40o.Ces triangles sont-ils congruents ? Si oui, quel théorème peut être utilisé pour prouver la congruence ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Deux triangles sont donnés. Le premier triangle a un côté de 5 cm de long et l'autre de 4 cm de long. Ils forment tous deux un angle de 60o.Le deuxième triangle a également deux côtés de même longueur formant un angle de 61o.Ces triangles sont-ils congruents ? Si oui, quel théorème peut être utilisé pour prouver la congruence ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu prouves que deux triangles sont congruents à l'aide de la SSS, cela signifie-t-il qu'ils auront également des surfaces égales ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu prouves que deux triangles sont congruents à l'aide de SAS, cela signifie-t-il qu'ils auront également des périmètres égaux ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'utilisation de SSS et SAS signifie-t-elle que tu n'auras pas besoin de prendre des mesures pour prouver la congruence ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si l'on te donne deux triangles et qu'ils ont chacun deux côtés égaux, cela signifie-t-il que ces triangles sont congruents ?

Afficer la réponse

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants CCC et CAC

  • Temps de lecture: 10 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication
  • Fact Checked Content
  • reading time:10 min
Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 01.01.1970
  • reading time:10 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Dans ce cas, il s'agit de raccourcis pour savoir si deux trianglesa> ou plus sont congruents ou non. C'est pourquoi cinq raccourcis ou théorèmes ont été introduits et abrégés, ce qui les rend plus faciles à retenir : SSS, SAS, HL, ASA et AAS. Dans cet article, seuls les deux premiers seront expliqués. Tu en sauras plus sur les autres dans un autre article.

    Si tu peux repérer une seule des conditions suivantes entre deux ou plusieurs triangles, cela signifie que les triangles sont congruents entre eux.

    Qu'est-ce que la SSS ?

    Le théorème Side-Side-Side ou SSS en abrégé est assez simple à comprendre.

    Lethéorème SSS signifie que les trois côtés correspondants sont égaux entre deux ou plusieurs triangles, ce qui signifie que tous les angles correspondants sont donc également égaux.

    Donc si tu repères SSS, pense à la congruence.

    Voyons quelques exemples de SSS.

    Deux triangles équilatéraux sont positionnés l'un à côté de l'autre. Si tu ne sais pas ce qu'est un triangle équilatéral, cela signifie simplement un triangle dont tous les côtés sont égaux.

    Ces deux triangles sont-ils congruents ?

    Deux triangles équilatéraux - StudySmarter Original

    Ainsi, par simple observation, on peut voir que les deux équilatéraux sont effectivement identiques (égaux) à la fois en longueur et en angle.

    C'est un cas idéal pour appliquer le théorème SSS afin de prouver la congruence. Donc, côté-côté-côté - les trois côtés respectifs sont égaux entre ces triangles. Tu peux regarder l'image ci-dessus pour mieux comprendre. Nous pouvons dire que le premier triangle est congruent au deuxième triangle :

    Triangle_1 ≅ Triangle_2

    L'exemple ci-dessus est un cas simple car tu n'as même pas besoin de regarder si les côtés donnés sont égaux de façon correspondante, c'est-à-dire si les côtés d'un triangle sont égaux aux côtés respectifs de l'autre triangle.

    Pourquoi est-ce important ? Tu peux positionner les triangles de n'importe quelle façon l'un par rapport à l'autre et il sera toujours facile de dire qu'ils sont congruents, car tous les côtés ont la même longueur.

    Examinons donc un cas où il est important de tenir compte de l'ordre dans lequel nous comparons les côtés d'un triangle et de l'autre dans l'exemple suivant.

    Voici deux triangles positionnés différemment l'un de l'autre - un triangle est tourné par rapport à l'autre. Ces triangles sont-ils congruents ?

    Triangles orientés différemment - StudySmarter Original

    En regardant les longueurs des côtés des deux triangles, il est évident que les triangles donnés sont congruents étant donné le théorème SSS :

    ABC ≅ DEF

    Dans cet exemple, l'ordre des lettres montre également que les côtés d'un triangle sont égaux aux côtés respectifs de l'autre triangle. ABC et DEF sont rangés par ordre alphabétique et les côtés respectifs AB, BC, CA sont égaux en longueur à DE, EF, FD consécutivement. Ce n'est pourtant pas si évident en regardant l'image ci-dessus. S'il n'y avait pas de lettres pour nommer les triangles, tu devrais d'abord comprendre que les triangles sont tournés l'un par rapport à l'autre.

    Garde à l'esprit que ce n'est pas toujours le cas, comme dans l'exemple ci-dessus - dans certains cas, les noms des triangles ne correspondent pas à l'ordre alphabétique ou ne sont pas disposés logiquement, mais les triangles peuvent tout de même être congruents. Commence toujours par regarder comment les triangles sont positionnés les uns par rapport aux autres. Les noms des triangles sont arbitraires.

    Dans la figure ci-dessous, la ligne XY est équidistante de la ligne MN. Le triangle YMX est-il congruent avec le triangle YNX ?

    SSS et SAS Image des triangles congruents formés à partir de lignes équidistantes StudySmarterImage 1 des triangles congruents formés à partir de lignes équidistantes - StudySmarter Original

    Solution

    La ligne XY étant équidistante de la ligne MN, cela signifie qu'elle coupe MN en son milieu. Cela implique que ;

    MX¯=XN¯MY¯=YN¯

    SSS et SAS Image 2 de triangles congruents formés à partir de lignes équidistantes StudySmarter

    Image 2 de triangles congruents formés à partir de lignes équidistantes - StudySmarter Original

    Maintenant, les deux triangles YMX et YNX ont le même troisième côté XY.

    SSS et SAS Image 3 de triangles congruents formés à partir de lignes équidistantes StudySmarter

    Image 3 des triangles congruents formés à partir de lignes équidistantes - StudySmarter Original

    Par conséquent ;

    YMXYNX

    Passons au théorème suivant appelé SAS.

    Qu'est-ce que le SAS ?

    Side-Angle-Side ou SAS en abrégé signifie que deux côtés correspondants ainsi que l'angle de jonction sont égaux entre deux ou plusieurs triangles.

    Le SAS est vrai parce que la longueur du troisième côté est prédéterminée si l'on connaît la longueur des deux autres côtés et l'angle qu'ils forment. Si deux ou plusieurs triangles ont deux côtés égaux et le même angle exact entre eux, cela signifie que les triangles donnés sont congruents.

    Voyons quelques exemples de SAS.

    Deux triangles sont donnés l'un à côté de l'autre. Le premier triangle a un angle de 60º et les deux côtés qui le forment ont tous deux une longueur de 6. Même cas pour le deuxième triangle. Ces triangles sont-ils congruents ?

    Triangles à angles égaux et côtés respectifs - StudySmarter Original

    Tu penses peut-être que c'est assez facile, hein ? Plutôt banal peut-être ?

    C'est vrai ! Rien qu'en regardant l'image, tu peux dire qu'il s'agit du même cas que le premier exemple de SSS, sauf que les côtés sont de longueurs différentes. Dans ce cas, cependant, les informations données sur les triangles ne concernent que les longueurs de deux côtés et l'angle entre les deux. Si tu connais déjà bien les triangles équilatéraux, tu peux dire immédiatement qu'ils sont tous les deux congruents, même sans l'image.

    Si l'on ne tient compte que des informations données, les triangles de cet exemple sont congruents étant donné la condition SAS :

    Triangle_1 ≅ Triangle_2

    Essayons un cas un peu plus complexe.

    Trois triangles sont positionnés différemment les uns des autres. Vois l'image ci-dessous.

    Triangles positionnés différemment - StudySmarter Original

    Ces triangles sont-ils congruents ?

    Tu peux voir que les triangles sont tous tournés les uns par rapport aux autres. En regardant les valeurs données sur les triangles, nous pouvons voir que ABC n'est pas congruent à DEF parce que les angles entre les côtés égaux correspondants AB, BC et DE, FE ne sont pas égaux. Cependant, ABC et XYZ sont congruents en raison du théorème SAS, car ils ont tous deux des côtés respectifs égaux et l'angle formé par eux est également le même :

    ABC ≅ XYZ

    N'oublie pas que les noms des triangles sont arbitraires et que, dans certains cas, ils ne correspondent pas à l'ordre alphabétique ou ne sont pas classés logiquement. C'est le cas dans l'exemple ci-dessus, mais ABC et XYZ sont toujours congruents en raison de SAS.

    Passons à d'autres exemples.

    Passons par un exemple pour mieux comprendre ce que signifient SAS et SSS ainsi que pour observer la distinction entre les deux.

    SSS et SAS Une image montrant trois diagrammes qui illustrent les théorèmes SSS et SAS StudySmarterUne image montrant trois diagrammes qui illustrent les théorèmes SSS et SAS - StudySmarter Original

    La figure ci-dessous est composée de trois diagrammes étiquetés I, II et III. Détermine les points suivants :

    a) Sont-ils tous congruents ?

    b) Lequel (lesquels) est (sont) congru(s) SSS ?

    c) Lequel (lesquels) est (sont) congru(s) en SAS ?

    d) Si l'aire du ΔMON est de 60m2, que ∠PRQ est de 60° et que la ligne PR mesure 10m, trouve QR.

    Solution

    a) D'après la figure ci-dessus, le diagramme I a les deux triangles réunis ont deux de leurs côtés et un angle égaux. Ainsi, par rapport au théorème SAS, on peut dire que les deux triangles en I sont congruents.

    Dans le diagramme II, les trois côtés des deux angles sont identiques ; ainsi, en accord avec le théorème SSS, les deux triangles du diagramme II sont congruents.

    Dans le diagramme III, les deux triangles ont deux de leurs côtés et un angle égaux. Ainsi, conformément au théorème SAS, nous pouvons dire que les deux triangles du diagramme III sont congruents.

    b) En se basant sur la solution précédente de la question a), on peut dire que seul le diagramme II est SSS congruent.

    c) En se basant sur la solution précédente de la question a), on peut dire que les deux diagrammes I et III sont congruents SAS.

    d) Puisque les triangles MON et PQR sont congruents SAS, c'est-à-dire ;

    MONPQR

    Alors ;

    Area of MON=60m2Area of PQR=60m2

    Pour trouver la ligne QR lorsque PR est donné, nous savons que ;

    Area of PQR==PR¯×QR¯×cos(PRQ)60m2=10m×QR¯×cos60°

    Fais de la droite QR le sujet de la formule en divisant les deux côtés de l'équation par le produit de 10m et cos60° pour obtenir ;

    QR¯=60m210m×cos60°

    Rappelle-toi que

    cos60°=0.5

    Par conséquent ,

    QR¯=60m210m×0.5QR¯=60m25mQR¯=60mm251mQR¯=12m

    SSS et SAS - Principaux enseignements

    • Il existe cinq théorèmes pour la congruence des triangles, qui permettent d'évaluer si des triangles donnés sont congruents.
    • Ces théorèmes sont SSS, SAS, HL, ASA et AAS ;
    • SSS (Side-Side-Side) stipule que deux triangles ou plus sont congruents si tous leurs côtés respectifs sont égaux ;

    • SAS (Side-Angle-Side) stipule que deux triangles ou plus sont congruents si deux côtés consécutifs sont égaux à celui d'un autre triangle et que les côtés respectifs forment le même angle exact.

    Apprends plus vite avec les 11 fiches sur CCC et CAC

    Inscris-toi gratuitement pour accéder à toutes nos fiches.

    CCC et CAC
    Questions fréquemment posées en CCC et CAC
    Qu'est-ce que le théorème de la congruence des triangles CCC?
    Le théorème de la congruence CCC stipule que si trois côtés d'un triangle sont égaux aux trois côtés d'un autre triangle, alors les deux triangles sont congruents.
    Que signifie CAC en géométrie?
    En géométrie, CAC signifie que deux triangles sont congruents si deux côtés et l'angle compris de l'un sont égaux à deux côtés et l'angle compris de l'autre.
    Comment appliquer le critère de congruence des triangles CCC?
    Pour appliquer le critère CCC, assurez-vous que tous les trois côtés d'un triangle sont égaux à tous les trois côtés du triangle à comparer.
    Quelle est la différence entre CCC et CAC?
    La différence est que CCC se base sur l'égalité de trois côtés, tandis que CAC se base sur l'égalité de deux côtés et l'angle compris.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Quand utilises-tu SSS et SAS ?

    Trois triangles sont donnés. Les côtés du premier triangle sont tous égaux aux côtés respectifs du deuxième triangle. Deux côtés et l'angle intermédiaire du troisième triangle sont égaux aux deux côtés et à l'angle respectifs du deuxième triangle. Coche toutes les affirmations qui sont correctes :

    Deux triangles rectangles sont donnés. Les deux jambes du premier triangle rectangle sont égales à celles du deuxième triangle. Coche toutes les affirmations qui sont correctes :

    Suivant
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 10 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !