Sauter à un chapitre clé
Aire d'un rectangle
Pour trouver l'aire d'un rectangle, il faut juste faire le produit de la longueur et de la largeur.
Si la largeur d'un rectangle est \(6 m\) et sa longueur est \(12 m\), son aire est donc \(12 \times 6 = 72 m^2\).
Aire d'un parallélogramme
Pour trouver l'aire d'un parallélogramme, il faut faire le produit de son hauteur \(h\) et sa base \(a\).
Si la base d'un parallélogramme est \(5 m\) et son hauteur est \(4 m\), son aire est donc \(5 \times 4 = 20 m^2\).
Aire d'un trapèze
Pour trouver l'aire d'un trapèze, il faut faire le produit de son hauteur \(h\) et la moyenne des longueurs de ses côtés parallèles, \(\frac{a+b}{2}\).
Si la hauteur d'un trapèze est \(3 m\) et ses deux côtés parallèles mesurent \(11 m\) et \(7 m\), alors son aire est \(3 \times \frac{7+11}{2} = 27 m^2\).
Aire d'un triangle rectangle
Pour trouver l'aire d'un triangle rectangle, il faut faire le produit d'une de ses hauteurs \(h\) et de sa base \(b\), et ensuite diviser par deux.
Si une hauteur d'un triangle rectangle est \(3 m\) et la base est \(4 m\), alors son aire est \( \frac{3 \times 4}{2} = 6 m^2\).
Aire d'un triangle
Pour trouver l'aire d'un triangle quelconque, il faut faire le produit d'une hauteur \(h\) et de sa base \(b\), et ensuite diviser par deux.
Si une hauteur d'un triangle rectangle est \(7 m\) et la base est \(8 m\), alors son aire est \( \frac{7 \times 8}{2} = 28 m^2\).
Formules supplémentaires à connaître
Aire d'un triangle équilatéral
Pour trouver l'aire d'un triangle équilatéral, il faut multiplier le carré de la longueur du côté (a) par la racine carrée de 3, puis diviser par 4. La formule est donc \(A = \frac{\sqrt{3}a^2}{4}\).
Si le côté d'un triangle équilatéral mesure \(4 m\), son aire est donc \(\frac{\sqrt{3} \times 4^2}{4} = 4\sqrt{3} m^2\).
Aire d'un cercle
Pour trouver l'aire d'un cercle, il faut multiplier le carré du rayon (r) par pi (π). La formule est donc \(A = πr^2\).
Si le rayon d'un cercle est \(5 m\), son aire est donc \(π \times 5^2 = 25π m^2\).
Aire d'un losange
Pour trouver l'aire d'un losange, il faut multiplier les longueurs des deux diagonales (d1 et d2) et diviser par deux. La formule est donc \(A = \frac{d1 \times d2}{2}\).
Par exemple, si les diagonales d'un losange mesurent \(6 m\) et \(8 m\), son aire est donc \(\frac{6 \times 8}{2} = 24 m^2\).
Voici le tableau récapitulatif des formules d'aires mentionnées dans le résumé de cours :
Formule géométrique | Formule de l'aire |
Rectangle | \(A = longueur \times largeur\) |
Parallélogramme | \(A = base \times hauteur\) |
Trapèze | \(A = hauteur \times \frac{base1 + base2}{2}\) |
Triangle rectangle | \(A = \frac{base \times hauteur}{2}\) |
Triangle quelconque | \(A = \frac{base \times hauteur}{2}\) |
Triangle équilatéral | \(A = \frac{\sqrt{3} \times côté^2}{4}\) |
Cercle | \(A = π \times rayon^2\) |
Losange | \(A = \frac{diagonale1 \times diagonale2}{2}\) |
Aires en géométrie - Points clés
- Pratique régulièrement le calcul des aires avec des exemples concrets pour mieux mémoriser les formules.
- N'hésite pas à utiliser le tableau récapitulatif comme aide-mémoire lorsque tu effectues des calculs d'aires.
- Assure-toi de bien comprendre les termes utilisés dans les formules (par exemple, la base, la hauteur, le rayon, etc.) pour éviter toute confusion.
Apprends avec 3 fiches de Aire en géométrie dans l'application gratuite StudySmarter
Tu as déjà un compte ? Connecte-toi
Questions fréquemment posées en Aire en géométrie
Quelle est la différence entre l'aire et la surface ?
La surface est un concept géométrique qui désigne l'aspect extérieur d'un objet tridimensionnel. Elle est généralement mesurée en unités carrées (comme les mètres carrés). L'aire, en revanche, est une mesure spécifique de cette surface. Par exemple, si vous avez un carré de 2 mètres de côté, sa surface est un carré, mais son aire est de 4 mètres carrés.
Comment on calcule l'aire d'un polygone ?
Le calcul de l'aire d'un polygone dépend du type de polygone. Pour un rectangle, l'aire est le produit de la longueur et de la largeur. Pour un carré, c'est le carré de la longueur d'un côté. Pour un triangle, c'est la moitié du produit de la base par la hauteur.
Comment trouver l'aire d'un losange ?
L'aire d'un losange peut être trouvée en utilisant la formule : Aire = (d1 * d2) / 2, où d1 et d2 sont les longueurs des diagonales du losange.
Comment trouver l'aire d'un triangle ?
L'aire d'un triangle peut être calculée en utilisant la formule : Aire = 1/2 * base * hauteur. La base est n'importe quel côté du triangle, et la hauteur est la distance perpendiculaire de cette base au sommet opposé.
Quelle est l'aire d'une surface ?
L'aire d'une surface est une mesure de la taille de cette surface. Elle est généralement exprimée en unités carrées, comme les mètres carrés ou les centimètres carrés. Le calcul de l'aire dépend de la forme de la surface. Par exemple, l'aire d'un carré est le carré de la longueur d'un côté, tandis que l'aire d'un cercle est π multiplié par le carré du rayon.
À propos de StudySmarter
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.
En savoir plus