Comment faire une démonstration par l'absurde ?
Pour faire une démonstration par l'absurde, nous devons d'abord supposer le contraire de ce que nous voulons démontrer et ensuite montrer que cette supposition aboutit à une contradiction. Cette méthode n'est pas le même qu'un contre-exemple. Ce dernier n'est qu'un exemple, alors qu'une démonstration par l'absurde nécessite un raisonnement déductif.
Nous pouvons démontrer les propriétés suivantes à l'aide d'une démonstration par l'absurde :
- il existe une infinité de nombres premiers ;
- le nombre \(\sqrt{2}\) n'est pas un nombre rationnel ;
- il n'existe aucun couple d'entiers \((a,b)\) tels que \(10a + 15b = 1\).
Utiliser une contradiction pour un raisonnement par l'absurde
Une contradiction est un élément clé du raisonnement par l'absurde. Cette contradiction doit être à l'encontre d'une hypothèse faite préalablement dans la démonstration ou d'un axiome mathématique.
Pour rappel, un axiome mathématique est une proposition considérée vraie sans démonstration, un des fondements des connaissances mathématiques.
Il ne suffit pas de trouver une contradiction. En effet, il est nécessaire d'expliquer pourquoi la contradiction trouvée est en fait une contradiction. Il est plus facile de comprendre comment faire avec des exemples.
Raisonnement par l'absurde : exemples
Voyons quelques exemples de comment se servir d'un raisonnement par l'absurde.
Peux-tu utiliser le raisonnement par l'absurde pour démontrer qu'il n'y a pas de plus grand nombre pair ?
Pour un raisonnement par l'absurde, nous devons d'abord supposer la réciproque de ce que nous souhaitons démontrer. Ainsi, nous ferons l'hypothèse qu'il y a un plus grand nombre pair \(n\).
Il faut maintenant utiliser cette hypothèse pour aboutir à une contradiction. Si \(n\) est pair, alors \(m = n + 2\) est aussi un nombre pair. Or, \(m > n\) et cela contredit hypothèse que le plus grand nombre pair est \(n\).
Ainsi, suite à un raisonnement par l'absurde, nous pouvons conclure qu'il n'y a pas de plus grand nombre pair.
Nous pouvons utiliser le raisonnement par l'absurde pour démontrer des résultats assez importants.
Peux-tu utiliser un raisonnement par l'absurde pour démontrer qu'il y a une infinité de nombres premiers ?
La première étape d'un raisonnement par l'absurde est de supposer la réciproque de l'énoncé que nous souhaitons démontrer. Ainsi, supposons qu'il existe un nombre fini \(n\) de nombres premiers : \(p_1, p_2, ..., p_n\).
Considérons maintenant le nombre \(P = p_1 p_2 ... p_n + 1\). Comme \(p_1, p_2, ..., p_n\) sont les seuls nombres premiers par notre hypothèse, le nombre \(P\) doit être un nombre composé.
Or, \(P\) n'est divisible par aucun des premiers \(p_1, p_2, ..., p_n\). Cela veut dire que \(P\) n'est divisible que par lui-même et \(1\). \(P\) est donc un nombre premier, ce qui contredit notre hypothèse que seuls \(p_1, p_2, ..., p_n\) sont des nombres premiers.
Suite à un raisonnement par l'absurde, nous pouvons ainsi conclure qu'il existe une infinité de nombres premiers.
Qu'est-ce que la contraposée ?
Pour une proposition mathématique de la forme « P implique Q », sa contraposée est « non Q implique non P ».
Considère la proposition « s'il pleut, alors le sol est mouillé ». Sa contraposée est « si le sol n'est pas mouillé, alors il ne pleut pas ».
Similairement, la contraposée de la proposition « si \(n^2 + 1\) est pair, alors \(n\) est impair » est « si \(n\) est pair, alors \(n^2 + 1\) est impair ».
Lorsqu'une proposition mathématique est vraie, sa contraposée est également vraie. Ainsi, pour démontrer certaines propositions, il pourrait être plus facile de démontrer la contraposée que la proposition elle-même. Dans ce cas, nous appliquons donc un raisonnement par contraposée.
Raisonnement par contraposée
Le raisonnement par contraposée consiste à utiliser la contraposée d'une proposition mathématique pour la démontrer. Nous pouvons appliquer un raisonnement par contraposée peu importe ce que nous souhaitons démontrer. Il faut néanmoins faire attention à bien construire la contraposée de la proposition en question.
Peux-tu démontrer que si \(x^3 - y^3 \leq 3x^2 y - 3xy^2\), alors \(y \geq x\) ?
D'abord, construisons la contraposée de la proposition à démontrer : si \(y < x\), alors \(x^3 - y^3 > 3x^2 y - 3xy^2\).
Il faut maintenant manipuler les expressions algébriques pour démontrer la contraposée.
\(y < x\)
\(x - y > 0\)
\((x - y)^3 > 0\)
\(x^3 - 3x^2 y + 3xy^2 - y^3 > 0\)
\(x^3 - y^3 > 3x^2 y - 3xy^2\)
Nous avons démontré que la contraposée est vraie, ainsi la proposition initiale est également vraie.
Raisonnement par l'absurde - Points clés
- Pour faire une démonstration par l'absurde, il faut d'abord supposer le contraire de ce qu'il faut démontrer et ensuite montrer que cette hypothèse entraîne une contradiction.
- Dans un raisonnement par l'absurde, il faut expliquer pourquoi la contradiction trouvée est effectivement une contradiction.
- La contraposée de « P implique Q » est « non Q implique non P ».
- Pour démontrer qu'une proposition mathématique est vraie, nous pouvons également démontrer que sa contraposée est vraie.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel