Il y a deux faces à la puissante pièce de monnaie du calcul : Les dérivéeset les intégrales. Il existe tout un ensemble d'études pour les premières, mais celui-ci est consacré aux secondes. L'idée d'une intégrale a été rendue assez claire et explicite jusqu'à présent.
Mais nous ne pouvons pas oublier les formules, la base même des mathématiques. L'intégration est jonchée d'une multitude de formules distinctes, ce qui rend la tâche facile pour faire une intégrale, en partie.
Jetons un coup d'œil à certaines de ces formules d'intégration:
Définition d'une formule d'intégration
Il peut sembler absurde, à première vue, que nous puissions avoir des formules pour les intégrales dès le départ. Mais il y a un hic, nous ne pouvons avoir des formules que pour des intégrales relativement simples, pas pour des fonctions plus composites.
Commençons par les bases, les formules fondamentales de l'intégration :
Formules d'intégration de base
Les formules suivantes dont nous allons parler sont les formules fondamentales, sur lesquelles d'autres formules sont éventuellement construites.
C'est pourquoi il serait bon de les retenir par cœur :
Formules d'intégration des fonctions trigonométriques
Nous venons de voir des formules d'intégration pour des fonctions telles que la fonction linéaire, les fonctions quadratiques, la fonction exponentielle, les fonctions logarithmiques, et aussi des fonctions comme \(\frac{1}{1+x}, \frac{1}{1+x^2}\) et ainsi de suite.
$$ \begin{aligned} &\int \cos x \, \mathrm{d}x=\sin x+c \ &\int \sin x \, \mathrm{d}x=-\cos x+c \ &\int \tan x \, \mathrm{d}x=-\log_e |\cos x|+c \N &\int \cot x \, \mathrm{d}x=\log_e |\sin x|+c \N &\nbsp;\nbsp;\nbsp;\nbsp;\nbsp;\nbsp;\nbsp;\nbsp;\nbsp; ?\int \sec^2 x \, \mathrm{d}x=\tan x +c \c &\int \csc x \, \mathrm{d}x=\log_e |\frac{\tan x}{2}|+c \c &\int \sec x \tan x \, \mathrm{d}x=\sec x+c \\ &\int \csc^2 x \, \mathrm{d}x=-\cot x+c \n &\int \csc x \cot x \n, \mathrm{d}x=-\cot x+c \n-end{aligned}$$$.
Tu peux te demander pourquoi il y a une constante d'intégration à la fin de chaque intégrale indéfinie. La raison est que si nous prenons la dérivée du résultat obtenu, la constante disparaît, car la dérivée est le contraire d'une intégrale.
Formule de l'intégrale définie
Comme tu l'as peut-être remarqué, les intégrations que nous avons vues sont toutes liées à des intégrales indéfinies. Mais qu'en est-il des intégrales définies? Les intégrales de toutes les fonctions restent inchangées, la seule chose introduite étant les limites de l'intégration.
Tu trouveras ci-dessous quelques formules, des propriétés essentiellement, qui sont cruciales lors de l'intégration définie.
Remarque qu'il n'y a pas de constante d'intégration dans l'intégration définie.
Formule d'intégration Tableau
Pour résoudre des intégrales, nous devons connaître une multitude de formules d'intégration différentes, sans lesquelles il sera impossible de résoudre des intégrales (à moins que tu ne triches en utilisant WolframAlpha ou quelque chose comme ça !)
Tu trouveras ci-dessous une liste de presque toutes les formules d'intégration dont tu auras besoin pour résoudre des intégrales plus compliquées, qui comprennent différentes fonctions composites. Cela inclut les formules que tu as déjà vues plus tôt (trigonométriques, fondamentales) ainsi que les formules trigonométriques inverses, les formules hyperboliques, et bien d'autres encore. Il s'agit d'un tableau pratique que l'on doit avoir à portée de main lorsqu'on fait des intégrales :
Tableau des formules d'intégration fondamentales
Revoyons certaines des formules d'intégration fondamentales sous forme de tableau :
Il existe d'autres formules d'intégration, qui sont énumérées ci-dessous : $$ \begin{aligned} &\int e^{c x} \sin b x \, \mathrm{d} x=\frac{e^{c x}}{c^2+b^2}(c \sin b x-b \cos b x) +c\\rm{d} &\Nint e^{c x} \Ncos b x \N, \Nmathrm{d} x=\frac{e^{c x}}{c^2+b^2}(c \Ncos b x+b \Nsin b x) +c\N&\Nint \frac{1}{x^2+a^2} \N- \NMathrm{d} x=\Nfrac{1}{a} \Ntan^{-1} \Nfrac{x}{a} +c\N&\Nint \Nfrac{1}{x^2-a^2} \, \mathrm{d} x= \left\{\begin{array}{l} \displaystyle \frac{1}{2 a} \ln \left( \frac{a-x}{a+x} \right) +c\\\displaystyle \frac{1}{2 a} \ln \left( \frac{x-a}{x+a} \right)+c \end{array}\right. \n-{aligned}$$$
Tableau des formules d'intégration trigonométrique
Revisitons les formules trigonométriques avec quelques formules au carré et des formules hyperboliques également :
$$ \begin{aligned} &\int \sin x \, \mathrm{d} x=-\cos x+c \N&\int \cos x \N, \mathrm{d} x=\sin x+c \N&\int \tan x \N, \mathrm{d} x=\ln |\sec x|+c \N&\N-int \Nsec x \N, \Nmathrm{d} x=\Nln |\tan x+\sec x|+c \N&\Nint \Nsin ^2 x \N, \Nmathrm{d} x=\Nfrac{1}{2}(x-\Nsin x \Ncos x)+c \N&\int \cos ^2 x \, \mathrm{d} x=\frac{1}{2}(x+\sin x \cos x)+c \&\int \tan ^2 x \, \mathrm{d} x=\tan x-x+c \&\int \sec ^2 x \, \mathrm{d} x=\tan x+c \\ &\int \sin x \cos ^n x \, \mathrm{d} x=-\frac{\cos ^{n+1} x}{n+1}+c \N &\int \sin ^n x \cos x \, \mathrm{d} x=\frac{\sin ^{n+1} x}{n+1} +c\\\N-&\int \sinh x \N-, \mathrm{d}x=\cosh x +c\N- &\int \cosh x \N-, \mathrm{d}x=\sinh x +c\N- end{aligned} $$
Certaines des formules ci-dessus sont elles-mêmes dérivées des autres, nous les prenons comme des formules car elles apparaissent très souvent lors de la résolution d'intégrales.
Exemples de formules d'intégration
Appliquons maintenant ces formules et résolvons quelques intégrales. Nous utiliserons les formules ci-dessus sans fournir de preuve, à moins qu'on ne nous demande d'en fournir une spécifiquement.
Nous allons d'abord l'intégrer comme nous le ferions normalement, puis appliquer les limites de l'intégration en utilisant la propriété de l'intégration définie (\(\int_a^b f(x) \, \mathrm{d}x=F(b)-F(a)\)).
En utilisant la formule \N( \Ndisplaystyle \Nint x^n \N, \Nmathrm{d}x=\Nfrac{x^{n+1}}{n+1}+c\N),
Évaluer l'intégrale \(\int_{-\pi}^{\pi} \sec x \tan x \, \mathrm{d}x\).
Solution :
Remarque que les limites de l'intégration sont de la forme \(-a\) à \(a\), ce qui signifie que nous devons d'abord vérifier si la fonction donnée est paire ou impaire.
$$ \begin{aligned} f(-x) &=\sec (-x) \tan (-x) \\\ &=-\sec x \tan x \\N \Ndonc f(-x) &=-f(x) \Nend{aligned}$$$.
Par conséquent, la fonction est une fonction impaire. Nous allons donc utiliser la propriété de l'intégrale définie : \(\int_{-a}^a f(x) \, \mathrm{d}x = 0\).
Ainsi ,
$$\int_{-\pi}^{\pi} \sec x \tan x \, \mathrm{d}x =0$$.
Il existe un grand nombre de formules essentielles à l'intégration, qui constituent les fondements de la résolution d'autres intégrales.
Il existe des formules d'intégration fondamentales telles que \(\Nint x^n \Nmathrm{d}x=\frac{x^{n+1}}{n+1}+c, \Nint e^x \Nmathrm{d}x =e^x+c, \Nint \Nfrac{1}{x} \Nmathrm{d}x =e^x+c, \Nint \Nfrac{1}{x} \Nmathrm{d}x =e^x+c, \Nmathrm{d}x =e^x+c. \, \mathrm{d}x=\log_e x+c\) which build up to more complex polynomial integrals and exponential integrals.
Lesformules d'intégrales tri gonométriques sont essentielles pour les intégrales trigonométriques composées, elles sont les suivantes : \( \begin{aligned} &\int \cos x \, \mathrm{d}x=\sin x+c, \int \sin x \, \mathrm{d}x=\cos x+c, \rmathrm{d}x=\sin x+c, \rm{d}x=\sin x+c)\int \tan x \, \mathrm{d}x=-\log_e |\cos x|+c, \int \cot x \, \mathrm{d}x=\log_e |\sin x|+c, \rm{d}x=\log_e |\sin x|+c, \c & \Nint \Nsec^2 x \N, \Nmathrm{d}x=\tan x +c, \Nint \Ncsc x \N, \Nmathrm{d}x=\log_e |\frac{\tan x}{2}|+c, \N- &\int \sec x \tan x \, \mathrm{d}x=\sec x+c, \int \csc^2 x \, \mathrm{d}x=-\cot x+c, \\int \csc x \cot x \, \mathrm{d}x=-\cot x+c \end{aligned}\)
Ces formules restent inchangées dans le cas des intégrales définies, et la seule chose qui est ajoutée est la limite d'intégration. Cependant, certaines propriétés doivent être rappelées.
Apprends plus vite avec les 3 fiches sur Formules d'intégration
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Formules d'intégration
Quels sont les différents types de formules d'intégration en mathématiques?
Les principaux types incluent l'intégration indéfinie, définie et par parties, ainsi que les intégrales multiples.
Comment utilise-t-on l'intégration par parties?
L'intégration par parties s'utilise en appliquant la formule ∫u dv = uv - ∫v du, où u et dv sont choisis en fonction de la dérivabilité et intégrabilité.
Qu'est-ce qu'une intégrale définie?
Une intégrale définie calcule l'aire sous une courbe entre deux points a et b, notée ∫[a,b] f(x) dx.
Quelle est la formule de base pour l'intégration indéfinie?
La formule de base est ∫f(x) dx = F(x) + C, où F(x) est la primitive de f(x) et C une constante.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt
Digital Content Specialist
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.