Trouvons maintenant le taux moyen de changement de population et le taux instantané de changement de population pour la fonction d'une population.
La population de grenouilles d'un certain étang a été observée pendant les mois de printemps et a été modélisée à l'aide de la fonction \(P(t)=1.25^t+2\) où \(t\) est le temps mesuré en semaines et \(P\) est la population en centaines de grenouilles.
a) Trouve le taux moyen de variation de la population entre la semaine 3 et la semaine 7.
b) Trouve le taux instantané de changement de population à la semaine (5).
Tout d'abord, il peut être utile de savoir à quoi ressemble le graphique de la fonction. Le graphique ci-dessous montre la fonction \(P(t)\) avec un tableau de valeurs pour plusieurs semaines :
Fig. 1 - Graphique de la fonction de croissance exponentielle de notre population avec un tableau de valeurs
Solution :
Pour les deux parties de la question, il peut être utile de se rappeler qu'un autre terme pour désigner le taux de changement est la pente. Tu devrais pouvoir tracer une ligne sur le graphique pour représenter le taux de variation de la population.
Partie a) Pour trouver le taux moyen de variation de la population entre deux moments, \(t_1\) et \(t_2\), tu peux tracer une ligne entre ces points, ici la semaine \(3\) et la semaine \(7\), sur le graphique comme indiqué ci-dessous. C'est ce qu'on appelle une ligne sécante. La pente de la ligne sécante entre deux points est le taux moyen de changement entre ces points.
Fig. 2 - Notre fonction exponentielle avec une droite sécante.
Pour trouver la pente de cette droite sécante, tu as besoin de la formule du taux moyen d'évolution de la population (qui est très similaire à la formule de la pente d'une droite entre deux points) :
\[\N- Début{alignement} \text{taux moyen de changement }&=\frac{\Delta P(t)}{\Delta t}\\ &=\frac{P(t_{2})-P(t_{1})}{t_{2}-t_{1}}. . \N- [end{align}\N]
Tu peux utiliser la table des valeurs pour faire des substitutions :
\[\begin{align} \text{taux moyen de changement}&=\frac{P(7)-P(3)}{7-3}\\N- &=\frac{6,77-3,95}{7-3}\N- &=\frac{2,82}{4}\N- &\Napprox 0,71 . \N- [\N- \N- \N- \N- \N- \N- \N]
Rappelons que la population est mesurée en centaines, donc un taux moyen de changement de \(0,71\) signifie que la population augmente en moyenne de \(71\) grenouilles par semaine de la semaine \(3\) à la semaine \(7\).
Partie b) Pour trouver le taux instantané de changement de la population à \N(5\N) semaines, tu utilises la formule ci-dessus qui dit que \N[\Certes, le taux instantané de changement}=P'(t).\N].
Rappelons d'abord que la dérivée d'une fonction en un seul point t'indique la pente de la ligne tangente en ce point. Sur le graphique, cela ressemblerait à ceci :
Fig. 3 - Notre fonction exponentielle avec une ligne tangente
Pour trouver la pente de cette ligne tangente, tu dois d'abord trouver la dérivée de ta fonction \(P(t)\). Comme \(P(t)\) est une fonction exponentielle, tu auras besoin de la règle de la dérivée de la fonction exponentielle. Et rappelle-toi que la dérivée d'une constante est \N(0\N) :
\N- [\N- Début{align}] P'(t)&=\frac{d}{dt}(1.25^{t}+2)\\ &=1.25^{t}ln(1.25).\\ \end{align}\]
Tu peux maintenant remplacer \N(5\N) par \N(t\N) pour trouver la pente à \N(5\N) semaines :
\N- [\N- Début{align}] P'(t)&=1.25^{t}ln(1.25)\NP'(5)&=1.25^{5}ln(1.25)\N- &\Napprox0.68.\NFin{align}\N]
La population de grenouilles augmente donc à un rythme d'environ \(68\) grenouilles par semaine à \(5\) semaines.
Note que la semaine 5 est à mi-chemin entre la semaine 3 et la semaine 7. Si tu regardes en même temps la ligne sécante et la ligne tangente sur le graphique, comme le montre l'image ci-dessous, tu verras à quel point les lignes sont similaires. Cela montre que le taux moyen de variation de la population est une assez bonne approximation du taux instantané de variation de la population.
Fig. 4 - Notre fonction exponentielle avec la ligne sécante et la ligne tangente