Le même processus se produit avec les polynômesa> de Taylor. Dans le pire des cas, quelle est la distance entre le polynôme de Taylor et la valeur réelle de la fonction ? La limite d'erreur de Lagrange est le pire des scénarios. Une fois que tu as compris cela, tu as un moyen garanti de vérifier que ta série de Taylor converge !
Définition de la limite d'erreur de Lagrange
Faisons d'abord un petit tour d'horizon. Tu auras besoin de la définition du polynôme de Taylor.
Soit \(f\) une fonction avec au moins \(n\) dérivées à \(x=a\). Alors, le \(n^{th}\) polynôme de Taylor d'ordre centré sur \(x=a\) est donné par
\[\begin{align} T_n(x)&=f(a)+\frac{f'(a)(x-a)}{1!}+\frac{f''(a)(x-a)^2}{2!}+\dots\\ & \quad +\frac{f^{(n)}(a)(x-a)^n}{n!}. \N- [end{align}\N]
Une fois que tu sais comment définir un polynôme de Taylor, tu peux définir la série de Taylor.
Soit \N( f \N) une fonction qui a des dérivées de tous les ordres à \N( x=a \N). La série de Taylor pour \N( f \N) à \N( x=a \N) est
\[ T(x) = \sum_{n=0}^{\infty}\dfrac{f^{(n)}(a)}{n!}(x-a)^n , \]
où \( f^{(n)} \N indique la \N dérivée de \( f \N), et \N f^{(0)}\N est la fonction originale \N f \N.
Le gros problème est que tu as besoin d'un moyen de savoir si la série de Taylor converge. Tu peux trouver l'erreur réelle entre la fonction et le polynôme de Taylor, mais dans de nombreux cas, cela peut s'avérer très difficile ! Ce qu'il te faut, c'est un moyen de déterminer l'ampleur de l'erreur. C'est là que l'erreur de Lagrange entre en jeu !
Soit \N( f \N) une fonction qui a dérivées de tous les ordres dans un intervalle ouvert \N(I\N) contenant \N( x=a \N). Alors la forme de Lagrange du reste du polynôme de Taylor, également connue sous le nom d'erreur de Lagrange, pour \(f \) centrée sur \(a \) est
\[ R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \]
où \N(c\N) est compris entre \N(x\N) et \N(a\N).
Voyons maintenant ce que l'erreur de Lagrange peut faire pour toi.
Formule pour la limite de l'erreur de Lagrange
Une fois que tu sais ce qu'est l'erreur de Lagrange, tu peux commencer à voir comment elle peut t'être utile. Cela commence par l'examen du théorème de Taylor avec reste.
Théorème de Taylor avec reste
Soit \N( f \N) une fonction qui a dérivées de tous les ordres dans un intervalle ouvert \N(I\N) contenant \N( x=a \N). Alors pour chaque entier positif \N(n\N) et pour chaque \N(x\N) dans \N(I\N),
\N[f(x) = T_n(x) + R_n(x)\N]
pour un certain \Nc\Nc\Nc est entre \Nc\Nc x\Nc et \Nc\Nc a\Nc.
Si tu regardes bien, tu remarqueras que la définition de l'erreur de Lagrange dit que \(c\N) est entre \N(x\N) et \N(a\N), mais le théorème de Taylor avec reste te donne quelque chose de plus. Il dit que pour une certaine valeur de \(c\N) comprise entre \(x\N) et \N(a\N), la fonction est en fait égale à la somme du polynôme de Taylor et de l'erreur de Lagrange !
Donc, si tu veux savoir à quel point une fonction et son polynôme de Taylor sont éloignés, il te suffit de regarder l'erreur de Lagrange.
La borne de l'erreur de Lagrange est la plus grande valeur que prend l'erreur de Lagrange compte tenu de la fonction \(f\) et de l'intervalle \(I\).
Cela signifie que la formule de la limite de l'erreur de Lagrange pour une fonction donnée (f), un intervalle (I) et un point (a) dans l'intervalle est la suivante
\[ \max\limites_{x\in I}|R_n(x)| = \max\limites_{x\in I}\left| \frac{f^{(n+1)}(a)}{(n+1)!}(x-a)^{n+1} \Ndroite|, \N]
et tu sais par la façon dont elle est définie que
\N[|R_n(x)| \le \max\limites_{x\in I} \left| \frac{f^{(n+1)}(a)}{(n+1)!}(x-a)^{n+1} \Ndroite| .\N]
Tu as maintenant un moyen de savoir si la série de Taylor converge !
Si \(R_n(x) \à 0\) comme \(n \à \infty\) pour tout \(x\) dans \(I\), alors la série de Taylor générée par \(f\) à \(x=a\) converge vers \(f\) sur \(I\), et cela s'écrit comme suit
\[f(x) = \sum_{n=0}^{\infty}\dfrac{f^{(n)}(a)}{n!}(x-a)^n .\]
Remarque que dans la définition de la série de Taylor, tu n'écrivais pas \(f(x) = \text{series}\) parce que tu ne savais pas si la série convergeait réellement. En examinant l'erreur de Lagrange, tu peux savoir si la série converge vraiment. Avant d'aller plus loin, voyons quelques exemples.
Exemple de limite d'erreur de Lagrange
Certaines propriétés de la fonction et de l'intervalle peuvent rendre la recherche de la limite d'erreur de Lagrange encore plus simple que celle définie ci-dessus :
si l'intervalle est centré sur \(x=a\), il peut être écrit comme \(I=(a-R,a+R)\) pour un certain \(R>0\), alors \(|(x-a)^{n+1} |\R^{n+1}) ; et
Si \(f^{(n+1)}(x) \le M\) sur \(I\) pour quelque \(M>0\) (en d'autres termes, les dérivées sont limitées), alors \(|f^{(n+1)}(c) |<M\) sur \(I\) ;
alors tu peux conclure que
\[|R_n(x) | \le M\frac{R^{n+1}}{(n+1)!}.\N-]
Voyons un exemple appliquant cette conclusion.
Quelle est l'erreur maximale lors de la recherche d'un polynôme de Maclaurin pour \(\sin x\) sur l'intervalle \( \left[ -dfrac{\pi}{2}, \dfrac{\pi}{2} \right]\) ? Que peux-tu conclure sur la série de Maclaurin pour \(\sin x\) ?
Solution :
Tout d'abord, rappelle-toi qu'un polynôme de Maclaurin est juste un polynôme de Taylor centré sur \(x=0\). En examinant certaines des dérivées de \(f(x)=\sin x\) avec leurs valeurs de fonction à \(x=0\), tu obtiens :
\[ \begin{array}{ccc} &f(x) = \sin x & \quad \quad & f(0) = 0\\ &f'(x) = \cos x & \quad \quad & f'(0)= 1 \\ &f''(x) = -\sin x & \N- \N- \N- \N- \N- \N- \N- \N- & f''''(x) = -\Ncos x & \N- \N- \N- \N- \N- & f'''(0)= -1 \N- & f^{(4)}(x) = \Nsin x & \N- \N- \N- \N- \N- & f^{(4)}(0) = 0. \Nend{array} \]
Comme tu peux le voir, le cycle revient au début de la liste lorsque tu arrives à la dérivée \(4^{\text{th}}\). Le polynôme de Maclaurin d'ordre \(n\) pour \(\sin x\) est donc le suivant
\N- [\N- Début{alignement} T_n(x) &= 0 + \frac{1}{1!}x + 0 + \frac{-1}{3!}x^3 + 0 + \dots \\N & \quad + \begin{cases} 0 & \text{ if } n \text{ est pair} \\N- \Ndfrac{f^{(n)}(0)}{n!}x^n & \N- \N- \Nsi n \Nest impair} \end{cases} \N- [\N- \N- \N- \N- \N- \N- \N]
et l'erreur de Lagrange aura une formule différente selon que \(n\) est pair ou impair.
Cependant, tu veux trouver l'erreur maximale, et ce n'est certainement pas le cas lorsque le terme d'erreur est nul ! Ce polynôme est centré sur \(x=0\), et l'intervalle est le suivant
\N[\Ngauche[ -\Ndfrac{\pi}{2}, \Ndfrac{\pi}{2} \Ndroite].\N]
Cela signifie que \(R = \frac{\pi}{2}\). Comme toutes les dérivées impliquent le sinus et le cosinus, tu sais aussi que
\N- [|f^{(n+1)}(c) |<1\N]
pour tout \(c\N) dans l'intervalle \N(I\N). Par conséquent
\N- [\N- Début{alignement} |R_n(x) | &\le M\frac{R^{n+1}}{(n+1)!} \N- &= 1\Ncdot \Ndfrac{\Ngauche(\Ndfrac{\Npi}{2}\Ndroite)^{n+1} }{(n+1)!} \N- &= \N-gauche(\N-{\pi}{2}\Ndroite)^{n+1} \frac{1}{(n+1)!}, \end{align}\]
et c'est l'erreur maximale.
Tu voudrais tirer une conclusion sur la série de Maclaurin pour \(\sin x\). Pour cela, tu dois regarder
\[\limites_{n\à \infty} |R_n(x) | = \lim\limits_{n\a \a \a \a \a \a \a \a \a \a \a \a \a \a } \left(\dfrac{\pi}{2}\right)^{n+1} \frac{1}{(n+1)!} .\]
Puisque cette suite converge vers \N(0\N) comme \N(n \Nà \Nfty\N), tu peux conclure que la série de Maclaurin converge. En fait, la série de Maclaurin est égale à la fonction sur l'intervalle entier \ ( \left[ -dfrac{\pi}{2}, \dfrac{\pi}{2} \right]\).
Pour un rappel sur les suites et leur convergence, voir Séquences et Limite d'une suite.
Voyons cette idée sous un angle légèrement différent.
Lorsque tu es en train d'estimer
\[\sin \left(\dfrac{\pi}{16}\right)\]
en utilisant le polynôme de Maclaurin, quel est le plus petit degré du polynôme qui garantit que l'erreur sera inférieure à \(\dfrac{1}{100}\) ?
Solution :
D'après l'exemple précédent, tu sais que l'erreur sur l'intervalle \ ( \left[ -\dfrac{\pi}{2}, \dfrac{\pi}{2} \right]\) a la propriété que
\N- [|R_n(x) | \le \left(\dfrac{\pi}{2}\right)^{n+1} \frac{1}{(n+1)!} \N-]
Tu veux que cette erreur soit inférieure à \(\dfrac{1}{100}\), ou en d'autres termes que
\[ \N- gauche(\Ndfrac{\pi}{2}\Ndroite)^{n+1} \Nfrac{1}{(n+1)!} < \Nfrac{1}{100}.\N]
Malheureusement, la résolution de \(n\) est un véritable défi ! La seule chose que tu puisses faire est donc d'essayer plusieurs valeurs de \N(n\N) et de voir laquelle rend la limite d'erreur de Lagrange suffisamment petite.
Mais qu'en est-il si tu n'as pas de calculatrice à portée de main ? Le problème est que l'intervalle est trop grand, ce qui fait que \(\dfrac{\pi}{2} >1\). Peux-tu changer l'intervalle pour que \(\dfrac{\pi}{16} \) soit à l'intérieur de l'intervalle, mais que la limite soit plus petite ? Bien sûr !
L'erreur maximale lors de la recherche d'un polynôme de Maclaurin pour \(\sin x\) sur l'intervalle \( \left[ -\dfrac{\pi}{4}, \dfrac{\pi}{4} \right]\) a la propriété que
\[|R_n(x) | \le \left(\dfrac{\pi}{4}\right)^{n+1} \frac{1}{(n+1)!} ,\]
où tu as utilisé la même technique que dans l'exemple précédent. Dans ce cas
\[ \dfrac{\pi}{16} \in \left[ -\dfrac{\pi}{4}, \dfrac{\pi}{4} \right] \]
et
\N- \N[ \Ndfrac{\Npi}{4} < 1, \N].
donc
\N- [\N- Début{alignement} |R_n(x) | &\le \left(\dfrac{\pi}{4}\right)^{n+1} \frac{1}{(n+1)!} \N- &< \Nfrac{1}{(n+1)!}. [\N-END{align}\N]
Tu dois maintenant t'assurer que l'erreur est suffisamment petite, ce qui signifie que tu as besoin que
\[ \frac{1}{(n+1)!} < \frac{1}{100},\]
ce qui est beaucoup plus facile à calculer. En fait, si tu prends \(n=4\) tu obtiens que
\[ \frac{1}{(4+1)!} = \frac{1}{5!} = \frac{1}{120} < \frac{1}{100}.\]
Cela pourrait te faire penser que tu as besoin d'un polynôme de Maclaurin de degré \(4^{\text{th}}\), mais tu sais déjà que les termes pairs du polynôme de Maclaurin sont nuls ! Alors, choisis-tu \(n=3\) ou \(n=5\) pour t'assurer que l'erreur est suffisamment petite puisque le polynôme de Maclaurin est le même pour \(n=3\) et \(n=4\) ? Si tu veux avoir la garantie absolue que l'erreur sera suffisamment petite, utilise \N(n=5\N).
Si tu vérifies les erreurs réelles
\N- [\N- Début{alignement} \left|T_3\left(\dfrac{\pi}{16}\right) - \sin \left(\dfrac{\pi}{16}\right) \right|&= \left| \frac{1}{1!}\left(\dfrac{\pi}{16}\right) + \frac{-1}{3!}\left(\dfrac{\pi}{16}\right) + \frac{-1}{3!}\left(\dfrac{\pi}{16}\right).}\left(\dfrac{\pi}{16}\right) ^3 - \sin \left(\dfrac{\pi}{16}\right) \right| \\ &= \left|\dfrac{\pi}{16} - \dfrac{1}{6}\left(\dfrac{\pi}{16}\right) ^3 - \sin \left(\dfrac{\pi}{16}\right) \right| \\N- &\Napprox 0.0000024, \Nend{align}\N]
ce qui est bien plus petit que ce dont tu avais besoin !
Aurait-elle été suffisamment petite si tu avais pris \(n=1\) ? Dans ce cas
\[ \begin{align} \left|T_1\left(\dfrac{\pi}{16}\right) - \sin \left(\dfrac{\pi}{16}\right) \right|&= \left| \frac{1}{1 !\sin \left(\dfrac{\pi}{16}\right) - \sin \left(\dfrac{\pi}{16}\right) \right| \\sin & \approx 0.00126, \end{align}\N]
donc même cela est plus petit que l'erreur qui t'a été donnée. Le problème, bien sûr, c'est de faire l'approximation sans utiliser de calculatrice !
Tu as peut-être remarqué que la série de Maclaurin dans l'exemple impliquant la fonction sinus est une série alternée. Comment la limite d'erreur de la série alternée se compare-t-elle à la limite d'erreur de Lagrange ?
Limite d'erreur des séries alternées et limite d'erreur de Lagrange
Attention, la borne d'erreur de Lagrange et la borne d'erreur de la série alternée ne sont pas la même chose !
Étant donné une série
\[ f(x) = \sum\limites_{n=1}^\infty a_nx^n\]
où les signes de \N(a_n\N) sont alternés, alors la limite d'erreur après le terme \N(x^n\N) est
\N[ \Ntexte{ erreur de série alternée} = \Ngauche| a_{n+1}x^{n+1}\Ndroite|.\N]
Remarque que la limite d'erreur de la série alternée ne comporte aucune dérivée. Même dans le cas d'une série de Maclaurin, la limite d'erreur de la série alternée et la limite d'erreur de Lagrange peuvent très bien donner des limites différentes parce que l'une implique des puissances de \(x\N) et l'autre implique des dérivées de la fonction ainsi que des puissances de \N(x\N).
Preuve de la limite d'erreur de Lagrange
La preuve de la limite d'erreur de Lagrange implique l'intégration répétée de la limite d'erreur et sa comparaison avec le polynôme de Taylor. Inutile de dire que cela peut rapidement devenir technique et compliqué, c'est pourquoi la preuve n'est pas incluse ici.
Limite d'erreur de Lagrange - Principaux enseignements
Soit \N( f \N) une fonction qui a dérivées de tous les ordres dans un intervalle ouvert \N(I\N) contenant \N( x=a \N). Alors la forme de Lagrange du reste du polynôme de Taylor, également connue sous le nom d'erreur de Lagrange, pour \(f\) centrée sur \(a\) est
\[ R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \]
où \N(c\N)est compris entre \N(x\N) et \N(a\N).
La limite de l'erreur de Lagrange est la plus grande valeur que prend l'erreur de Lagrange compte tenu de la fonction \(f\) et de l'intervalle \(I\).
Si \(R_n(x) \à 0\) comme \(n \à \infty\) pour tout \(x\) dans \(I\), alors la série de Taylor générée par \(f\) à \(x=a\) converge vers \(f\) sur \(I\), et cela s'écrit comme suit
\[f(x) = \sum_{n=0}^{\infty}\dfrac{f^{(n)}(a)}{n!}(x-a)^n .\]
Si l'intervalle est centré sur \N(x=a\N), il peut être écrit sous la forme \N(I=(a-R,a+R)\Npour un certain \N(R>0\N), alors \N(|(x-a)^{n+1} |\), et si \(f^{(n+1)}(x) \le M\) sur \(I\) pour quelque \(M>0\) alors \(|f^{(n+1)}(c) |<M\) sur \(I\), alors
\N[|R_n(x) | \Nle M\Nfrac{R^{n+1}}{(n+1)!}.\N]