Coefficient directeur d'une droite
Le coefficient directeur d'une droite est la pente de la droite. Il est particulièrement utile en physique pour en déduire les valeurs d'autres quantités physiques. Plus le coefficient directeur est élevé, plus la pente est raide. Si le coefficient directeur est négatif, alors la droite descend.
Fig. 1 - La droite bleue a un coefficient directeur supérieur à celui de la droite verte ; la droite rouge a un coefficient directeur négatif.
Pour calculer le coefficient directeur d'une droite, il faut utiliser la formule suivante : \(\frac{f(x) - f(y)}{x -y}\), où \(x\) et \(y\) sont deux valeurs dans le domaine de définition de \(f\). Seules les droites ont des coefficients directeurs. Pour d'autres types de fonctions, il faut utiliser la dérivation pour obtenir des informations similaires. Pour cela, un premier pas est d'étudier le taux d'accroissement.
Taux d'accroissement
Le taux d'accroissement d'une fonction \(f(x)\) entre \(a\) et \(b\) est donné par la formule \( \tau = \frac{f(b) -f(a)}{b - a}\). Il s'agit du coefficient directeur de la droite qui passe par les points \((a, f(a))\) et \((b, f(b))\).
Peux-tu calculer le taux d'accroissement de la fonction \(f(x) = x^2\) entre \(1\) et \(2\) ?
\( \tau = \frac{f(2) -f(1)}{2 - 1}\)
\( \tau = 4 - 1 = 3\)
Considérons maintenant \(b\) comme une variable. SI \(b\) devient de plus en plus proche de \(a\), nous nous rapprochons du nombre dérivé de la fonction \(f\) en \(a\).
Qu'est-ce qu'un nombre dérivé ?
Le nombre dérivé d'une fonction \(f(x)\) en \(x=a\) est la limite \[ \lim_{h \to 0} \frac{f(a+h) -f(a)}{h} \]
Calculons le nombre dérivé de la fonction \(f(x) = x^2\) en \(3\).
D'abord, calculons le taux de variation entre \(3\) et \(h\) :
\( \frac{(3+h)^2 -3^2}{h} \)
\( = \frac{(9 + 6h + h^2) -9}{h} \)
\( = \frac{6h + h^2}{h} \)
\( = 6 + h \)
Quand \(h\) tend vers \(0\), \(\frac{f(3+h) -f(3)}{h} = 6 +h \) tend vers \(6\). Donc, le nombre dérivé de la fonction \(f(x) = x^2\) en \(3\) est \(6\).
Lien entre un nombre dérivé et la tangente
Le nombre dérivé d'une fonction en un point donné est le coefficient directeur de la tangente en ce point. Cela découle de la définition du nombre dérivé. Comme expliqué avant, le taux d'accroissement entre deux points correspond au coefficient directeur de la droite qui passe par ces deux points.
De plus, le nombre dérivé correspond à la limite du taux d'accroissement lorsqu'un des points devient infiniment plus proche de l'autre. Géométriquement, la droite alors considérée est la tangente en ce point.
Fig. 2 Le lien entre un nombre dérivé et la tangente
Coefficient directeur de la tangente
Le coefficient directeur de la tangente en un point spécifique est donné par le nombre dérivé de la fonction en ce point. Il est également possible d'évaluer la fonction dérivée en ce point. Pour plus d'informations à ce sujet, consulte le résumé de cours sur les dérivées.
Peux-tu déterminer le coefficient directeur de la tangente de la courbe représentative de \(f(x) = x^2\) en \(x =1\) ?
Nous pouvons calculer le nombre dérivé en ce point pour connaître le coefficient directeur de la tangente.
D'abord, calculons le taux de variation entre \(1\) et \(h\) :
\( \frac{(1+h)^2 -1^2}{h} \)
\( = \frac{2h + h^2}{h} \)
\( = 2 + h \)
Quand \(h\) tend vers \(0\), le taux d'accroissement tend vers \(0\). Donc, le nombre dérivé de la fonction \(f(x) = x^2\) en \(1\) est \(2\).
Enfin, le coefficient directeur de la tangente en \(x = 1\) est \(2\).
Nous pouvons également déterminer le coefficient directeur grâce à la lecture graphique.
Lecture graphique du nombre dérivé
Pour faire la lecture graphique du nombre dérivé en un point donné, il faut tracer la tangente à la courbe en ce point et déterminer le coefficient directeur de cette droite. Dans la plupart d'exercices de ce type, la tangente est déjà tracée.
Peux-tu déterminer le nombre dérivé en \(x = 1\) de la fonction \(\ln x\) (en vert) ?
Fig 3. - Exemple de lecture graphique du nombre dérivé
Nous devons déterminer le coefficient directeur de la tangente de la fonction en \(x =1\) (en bleu).
Pour cela, il suffit de lire deux points du graphique et calculer la pente à l'aide de la formule donnée dans la première section. Nous utiliserons les points \((1,0)\) et \((0,-1)\), mais tu peux utiliser d'autres points de la droite.
\(\frac{0 - (-1)}{1 - 0} = 1\)
Le nombre dérivé est donc \(1\).
Nombres dérivés - Points clés
- Le coefficient directeur d'une droite est la pente de la droite.
- Le taux d'accroissement d'une fonction \(f(x)\) entre \(a\) et \(b\) est donné par la formule \( \tau = \frac{f(b) -f(a)}{b - a}\).
- Le nombre dérivé d'une fonction \(f(x)\) en \(x=a\) est la limite \( \lim_{h \to 0} \frac{f(a+h) -f(a)}{h} \).
- Le nombre dérivé d'une fonction en un point donné est le coefficient directeur de la tangente en ce point.
- Pour faire la lecture graphique du nombre dérivé en un point donné, il faut tracer la tangente à la courbe en ce point et déterminer le coefficient directeur de cette droite.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel