Dérivée d'une fonction composée
Une formule importante parmi les formules de dérivation est la dérivation des fonctions composées ou la règle de la chaîne.
La règle de la chaîne peut être utilisée pour calculer la dérivée d'une fonction composée, qui est une fonction composée de deux ou plusieurs autres fonctions.
Supposons que nous ayons une fonction \(f(x) = g(h(x))\). À l'aide de la règle de la chaîne, nous pouvons calculer sa dérivée comme suit :
\(f '(x) = g '(h(x)) \times h'(x)\)
\(f(x) = sin(x^2)\)
\(f'(x) = cos(x^2) \times (x^2)'\)
\(f'(x) = 2x \times cos(x^2)\)
Dérivée d'un produit
La dérivation d'une fonction composée peut également être utilisée pour calculer la dérivée d'un produit de deux fonctions. Supposons que nous ayons une fonction \(f(x) = g(x) \times h(x)\). Nous pouvons calculer sa dérivée comme suit :
\(f '(x) = g'(x) \times h(x) + g(x) \times h'(x)\)
\(f(x) = (x^3-x+1) \times (x^2-1)\)
\(f'(x) = u(x) \times v'(x) + u'(x) \times v(x)\)
\(= (x^3 - x + 1) \times (2x) + (x^2-1) \times (3x^2 -1)\)
\(= 2x^4 -2x^2 +2x + 3x^4 -x^2 -3x^2 +1\)
\(= 5x^4 - 6x^2 + 2x + 1\)
Dérivée d'un quotient
Une autre formule importante des formules de dérivation est la règle du quotient. La règle du quotient peut être utilisée pour calculer la dérivée d'un quotient de deux fonctions. Supposons que nous ayons une fonction \(f(x) = \frac{g(x)}{h(x)}\). En utilisant la règle du quotient, nous pouvons calculer sa dérivée comme suit :
\(f '(x) = \frac{g'(x) \times h(x) - g(x) \times h'(x) }{ h(x)^2}\)
\(f(x) = \frac{2x+1}{x^2+1}\)
\(f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{(v(x))^2}\)
\(= \frac{(2)(x^2+1)-(2x+1)(2x)}{(x^2+1)^2}\)
\(= \frac{2x^2+2-4x^2-2x}{x^4+2x+1}\)
\(= \frac{-2x^2-2x+2}{x^4+2x+1}\)
Dérivée d'une somme
La règle de la somme est importante à connaître pour les opérations de formules de dérivation. La règle de la somme peut être utilisée pour calculer la dérivée d'une somme de deux fonctions. Supposons que nous ayons une fonction \(f(x) = g(x) + h(x)\). En utilisant la règle de la somme, nous pouvons calculer sa dérivée comme suit :
\(f '(x) = g'(x) + h'(x)\)
\(f(x) = 7x^3-3x^2+3\)
\(f'(x) = (7x^3)'-(3x^2)'+(3)'\)
\(=7(3x^2)-3(2x)+0\)
\(=21x^2-6x\)
Ce ne sont pas toutes les formules de dérivation qui existent, il y en a d'autres que tu peux voir dans le tableau ci-dessous. Ces formules nous permettent de calculer les dérivées d'une grande variété de fonctions. En mathématiques, nous utilisons ces formules pour nous aider à comprendre comment une fonction change lorsque son entrée change.
Exemples de formules de dérivation
Voici un tableau avec les différentes formules de dérivation que tu as besoin de connaître.
Fonction f | Fonction dérivée f' | Ensemble de dérivabilité |
\(f(x) = k\) | \(f'(x) = 0\) | \( \mathbb{R} \) |
\(f(x)=x\) | \(f'(x)=1\) | \( \mathbb{R} \) |
\(f(x)=ax+b\) | \(f'(x)=a\) | \( \mathbb{R} \) |
\(f(x) = x^n \) | \(f'(x) = nx^{n-1}\) | \( \mathbb{R} \) |
\(f(x) = \sqrt{x} \) | \( f'(x) = \frac{1}{2 \sqrt{x}} \) | \( ]0,+ \infty [ \) |
\( f(x) = sin(x)\) | \(f'(x)=cos(x)\) | \( \mathbb{R} \) |
\( f(x)=cos(x)\) | \(f'(x)=-sin(x)\) | \( \mathbb{R} \) |
\(f(x)= \frac{1}{x} \) | \( f'(x)=-\frac{1}{x^2}\) | \( \mathbb{R}^* \) |
\(f(x)= \frac{1}{x^n} \) | \( f'(x)=-\frac{n}{x^{n+1}}\) | \( \mathbb{R}^* \) |
Formules de dérivation - Points clés
- La dérivée d'une fonction est une mesure de la façon dont la fonction change lorsque son entrée change.
- Dérivée d'une fonction composée : \(f '(x) = g '(h(x)) \times h'(x)\)
- Dérivée d'un produit : \(f '(x) = g'(x) \times h(x) + g(x) \times h'(x)\)
- Dérivée d'un quotient : \(f '(x) = g'(x) \times h(x) - g(x) \times \frac{h'(x) }{ h(x)^2}\)
- Dérivée d'une somme : \(f '(x) = g'(x) + h'(x)\)
- Tu peux t'aider d'un tableau avec les différentes formules pour calculer les dérivées de certaines fonctions.
Comment tu t'assures que ton contenu est précis et digne de confiance ?
Chez StudySmarter, tu as créé une plateforme d'apprentissage qui sert des millions d'étudiants. Rencontre les personnes qui travaillent dur pour fournir un contenu basé sur des faits et pour veiller à ce qu'il soit vérifié.
Processus de création de contenu :
Lily Hulatt est une spécialiste du contenu numérique avec plus de trois ans d’expérience en stratégie de contenu et en conception de programmes. Elle a obtenu son doctorat en littérature anglaise à l’Université de Durham en 2022, a enseigné au Département d’études anglaises de l’Université de Durham, et a contribué à plusieurs publications. Lily se spécialise en littérature anglaise, langue anglaise, histoire et philosophie.
Fais connaissance avec Lily
Processus de contrôle de la qualité du contenu:
Gabriel Freitas est un ingénieur en intelligence artificielle possédant une solide expérience en développement logiciel, en algorithmes d’apprentissage automatique et en IA générative, notamment dans les applications des grands modèles de langage (LLM). Diplômé en génie électrique de l’Université de São Paulo, il poursuit actuellement une maîtrise en génie informatique à l’Université de Campinas, avec une spécialisation en apprentissage automatique. Gabriel a un solide bagage en ingénierie logicielle et a travaillé sur des projets impliquant la vision par ordinateur, l’IA embarquée et les applications LLM.
Fais connaissance avec Gabriel