Exponentielle et logarithme : définitions
La fonction exponentielle est la fonction notée \(exp(x)\) ou \(e^x\), où \(e\) est le nombre d'Euler ou la constante de Néper. Il y a plusieurs façons de définir cette fonction.
Nous pouvons d'abord donner une définition de l'exponentielle par rapport à sa dérivée.
La fonction exponentielle est l'unique fonction qui vérifie \(f(x) = f'(x)\) et \(f(0) = 1\). Autrement dit, la dérivée de l'exponentielle est elle-même.
Nous pouvons dire que la fonction exponentielle est l'unique solution de l'équation différentielle \(f(x) = f'(x)\) avec condition initiale \(f(0) = 1\). Les équations différentielles sont celles qui impliquent la dérivée d'une fonction. Tandis que la solution d'une équation algébrique « usuelle » est un nombre, la solution d'une équation différentielle est une fonction.
Même si nous pouvons utiliser sa dérivée — ou une équation différentielle — pour définir la fonction exponentielle, il y a aussi une définition basée sur l'algèbre.
La fonction exponentielle \(exp(x)\) est l'unique fonction qui vaut \(1\) en \(0\) et qui transforme une somme en produit : \(exp(x + y) = exp(x)exp(y)\).
Nous pouvons également définir la fonction exponentielle relative au logarithme népérien.
La fonction exponentielle \(exp(x)\) est la fonction inverse (ou la bijection réciproque) du logarithme népérien, \(ln(x)\).
Comme l'exponentielle est l'inverse du logarithme, le logarithme est l'inverse de l'exponentielle.
Tandis que nous définissons la fonction exponentielle par rapport à sa dérivée, nous pouvons définir la fonction logarithme à l'aide d'une primitive.
Le logarithme népérien ou logarithme naturel, \(ln(x)\), est la primitive de la fonction inverse \(\frac{1}{x}\) qui s'annule quand \(x = 1\).
Nous pouvons également définir la fonction exponentielle à l'aide d'une série de Taylor ou série entière. Précisément, la fonction exponentielle peut être définie ainsi : \[ exp(x) = \sum_ {n=0}^{+\infty} \frac{x^n}{n!}\] En effet, le théorème de Taylor nous permet de générer une série qui est égale à une fonction donnée, sous certaines conditions.
Exponentielle et logarithme : relation
Quelle est la relation entre les fonctions exponentielle et logarithme ? La fonction exponentielle est la fonction inverse (ou bijection réciproque) du logarithme népérien, et vice-versa. En effet, \(ln(e^x) = x\) et \(ln(e^x) = x \). De plus, si nous examinons leurs courbes représentatives, elles sont symétriques par rapport à la droite \(y = x\).
Fig. 1 - Les courbes représentatives des fonctions exponentielle et logarithme
Exponentielle et logarithme : cours
Détaillons les informations importantes qu'il faut savoir sur les fonctions exponentielle et logarithme.
Le domaine de définition de la fonction exponentielle est \(\mathbb{R}\). Or, le logarithme népérien n'est défini que pour des nombres réels strictement positifs. De plus, les fonctions exponentielle et logarithme sont dérivables, et donc continues sur leurs domaines de définition.
Si une fonction est dérivable sur un ensemble donné, alors elle est forcément continue sur ce même domaine.
La dérivée de \(exp(x)\) est elle-même, alors que la dérivée de \(ln(x)\) est \(\frac{1}{x}\). En utilisant la dérivée d'une composition de fonctions, nous pouvons généraliser ces résultats pour une fonction dérivable \(u(x)\).
Fonction | Dérivée |
\(exp(u(x))\) | \(u'(x)exp(u(x))\) |
\(ln(u(x))\) | \(\frac{u'(x)}{u(x)}\) |
Nous pouvons utiliser les dérivées de l'exponentielle et du logarithme pour étudier les sens de variation de ces deux fonctions. Comme \(exp(x)\) et \(\frac{1}{x}\) sont positives sur les ensembles de définition de \(exp(x)\) et \(ln(x)\) respectivement, ces deux fonctions sont croissantes.
Propriétés du logarithme et de l'exponentielle
Pour manipuler ces fonctions avec aisance, il y a certaines règles à connaître. Quelles sont les propriétés du logarithme et de l'exponentielle ? Voyons d'abord les propriétés de l'exponentielle, \(exp(x)\), qui sont très similaires aux règles pour les puissances.
\(exp(0) = 1\)
\(exp(1) = e\)
\(exp(a+b) = exp(a)exp(b)\)
\(exp(na) = (exp(a))^n\)
Pour se souvenir des propriétés du logarithme, nous pouvons nous servir du fait que le logarithme népérien, \(ln(x)\), est la fonction inverse ou la bijection réciproque de la fonction exponentielle.
\(ln(1) = 0\)
\(ln(e) = 1\)
\(ln(ab) = ln(a) + ln(b)\)
\(ln(a^n) = n ln(a)\)
Limites de l'exponentielle et du logarithme
L'étude d'une fonction n'est pas complète sans déterminer les limites aux points où elle n'est pas définie. Les limites de l'exponentielle et du logarithme en \(+ \infty \) sont \(+ \infty \). De plus, la limite de la fonction exponentielle en \(- \infty \) est \(0\) et la limite de la fonction logarithme en \(0\) est \(- \infty \).
Même si les fonctions exponentielle et logarithme tendent toutes les deux vers \(+ \infty\) quand \(x\) tend vers \(+ \infty\), elles évoluent à des vitesses différentes. Il est donc important de connaître les croissances comparées de l'exponentielle, du logarithme et des polynômes.
La fonction exponentielle augmente le plus rapidement. En effet, pour tout réel \(n\) strictement positif, nous avons les résultats suivants pour des limites : \[\lim_{x \to + \infty} \frac{e^x}{x^n} = + \infty \hspace{20 mm} \lim_{x \to - \infty} e^{x} x^{n} = 0 \] Nous disons souvent que l'exponentielle gagne, ou emporte, sur une puissance.
La fonction logarithme augmente le plus lentement. Nous avons ainsi des résultats similaires qui portent sur les limites : \[\lim_{x \to + \infty} \frac{ln(x)}{x^n} = 0 \hspace{20 mm} \lim_{\substack{x\to\infty\\x>0}} ln(x) x^{n} = 0 \] Pareil ici, nous disons souvent qu'une puissance gagne ou emporte sur le logarithme.
Exponentielle et logarithme - Points clés
- La fonction exponentielle \(exp(x)\) est la fonction inverse, ou la bijection réciproque, du logarithme népérien, \(ln(x)\). Il y a plusieurs façons de définir ces fonctions indépendamment de l'autre.
- Il y a certaines propriétés importantes qu'il faut retenir pour les manipuler.
- Les fonctions exponentielle et logarithme sont continues, dérivables et croissantes sur leurs domaines de définition respectifs, \(\mathbb{R}\) et \(\mathbb{R}_{+}^{*}\).
- Même si les deux fonctions sont croissantes, elles évoluent à des vitesses différentes : l'exponentielle gagne sur une puissance, alors qu'une puissance gagne sur le logarithme.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel