Qu'est-ce que la dérivée d'une fonction ?
La dérivée, aussi appelée fonction dérivée, d'une fonction \(f(x)\) indique comment elle varie. Il s'agit d'une fonction, qui peut être notée \(f'(x)\), \(\frac{dy}{dx}\) ou encore \(\dot{f}(x)\). Si la valeur de la dérivée est positive pour une certaine valeur de \(x\), alors la fonction augmente en ce point. Si la dérivée est négative, alors la fonction diminue.
La dérivée de la fonction \(f(x)\) est la fonction \(f'(x) = \lim_{h \to 0} \frac{f(x+h) -f(x)}{h}\).
Examinons cette définition de plus près. L'expression \(\frac{f(x+h) -f(x)}{h}\) est le coefficient directeur, ou pente, d'une droite qui passe par les points \((x,f(x))\) et \((x + h, f(x+h))\). Rappelle-toi que le coefficient directeur d'une droite indique la variation d'une droite : si elle augmente ou si elle diminue.
De plus, nous prenons la limite de cette expression lorsque \(h\) tend vers \(0\). Cela veut dire que nous essayons de « rapprocher » la courbe au plus près avec une droite. Cette droite s'appelle la tangente.
Il faut garder à l'esprit que la limite \(\lim_{h \to 0} \frac{f(a+h) -f(a)}{h}\) n'existe pas toujours et dans ce cas, la fonction n'est pas dérivable. Alors, comment savoir si une fonction est dérivable ou pas ?
Fonctions dérivables
Une fonction dérivable est une fonction pour laquelle la dérivée existe. Formellement, la dérivée d'une fonction existe si son taux d'accroissement \( \tau_h = \frac{f(a+h) -f(a)}{h}\) tend vers un nombre réel lorsque \(h\) tend vers \(0\). Or, nous utilisons plutôt les propriétés de dérivabilité des fonctions usuelles pour déterminer s'il s'agit d'une fonction dérivable. Il faut garder à l'esprit que la somme, le produit, ou une composition de fonctions dérivables est également dérivable.
Cette propriété peut être étendue aux différences et quotients de fonctions dérivables en considérant l'opposé et l'inverse d'une fonction, respectivement.
La fonction \(f(x) = e^x \cos(x^2)\) est-elle dérivable ?
Oui, en effet, \(x^2\) est dérivable car il s'agit d'un polynôme. De plus, \(\cos(x^2)\) est une composition de fonctions dérivables et \(e^x \cos(x^2)\) en est un produit.
Heureusement, la plupart des fonctions que nous utilisons sont dérivables. En revanche, il y a certains exemples de fonctions non dérivables notables.
La fonction inverse n'est pas dérivable en \(x=0\). En effet, cette fonction n'est même pas définie en \(x = 0\), donc elle ne peut pas y être dérivable.
La fonction valeur absolue n'est pas dérivable en \(x=0\). En effet, la limite du taux d'accroissement lorsque \(h\) tend vers \(0\) n'est pas définie.
Comment donc calculer la dérivée d'une fonction ? Nous pouvons utiliser la définition formelle avec le taux d'accroissement. Or, lorsqu'il s'agit d'une fonction usuelle, nous donnons sa dérivée de mémoire.
Tableau de dérivées
Ce tableau de dérivées résume les dérivées de certaines fonctions avec lesquelles nous travaillons souvent. Si tu te souviens de ces dérivées, tu es déjà sur la bonne voie pour maîtriser les fonctions dérivées.
\(f(x)\) | \(f'(x)\) |
\(x^n\) | \(nx^{n-1}\) |
\(e^x\) | \(e^x\) |
\(\ln(x)\) | \(\frac{1}{x}\) |
\(\sin(x)\) | \(\cos(x)\) |
\(\cos(x)\) | \(-\sin(x)\) |
Certaines formules te permettront de déterminer encore plus de dérivées.
Dérivées : formules
Nous présentons quelques formules utiles qui servent à déterminer la dérivée d'une fonction. Dans cette section, nous allons considérer deux fonctions dérivables, \(f(x)\) et \(g(x)\). Nous disposons des formules suivantes :
\((f(x)+g(x))' = f'(x) + g'(x)\) ;
\((f(x)g(x))' = f(x) \times g'(x) + f'(x) \times g(x)\) ;
pour \(g(x) \neq\), \(\left( \frac{f(x)}{g(x)} \right)' = \frac{f'(x)g(x) - f(x)g(x)}{g(x)^2}\) ;
\((f \circ g)'(x) = g'(x)f'(g(x))\).
Voyons maintenant comment appliquer ces formules au calcul d'une dérivée.
Comment effectuer le calcul d'une dérivée ?
Effectuer le calcul d'une dérivée nécessite la connaissance des dérivées usuelles, ainsi que les formules de dérivation. Or, pour trouver des dérivées avec aisance, il faut pratiquer... et pratiquer... et pratiquer encore. Regardons un exemple de calcul d'une dérivée.
Quelle est la dérivée de \(f(x) = x \ln x\) ?
Comme il s'agit d'un produit, il faut utiliser la formule :
\(f'(x) = 1 \times \ln x + x \times \frac{1}{x}\)
\(f'(x) = \ln x + 1\)
Il est parfois nécessaire d'appliquer plusieurs formules pour trouver la dérivée d'une fonction.
Peux-tu déterminer la dérivée de \(g(x) = e^x\cos(x^2)\) ?
Il s'agit d'un produit de deux fonctions, alors \(g'(x) = (e^x)' \cos(x^2) + e^x (\cos(x^2))'\).
Pour déterminer la dérivée de \(\cos(x^2)\), il faut la considérer comme une fonction composée. Ainsi, \((\cos(x^2))' = (x^2)' \times -\sin(x^2) = -2x \sin(x^2)\).
Enfin, la dérivée de \(g(x)\) est \(g'(x) = e^x \cos(x^2) -2x e^x \sin(x^2)\).
Qu'est-ce qu'une dérivée partielle ?
Considérons une fonction qui dépend de plusieurs variables. Une manière d'élargir la définition de dérivée est avec les dérivées partielles.
Soit \(f\) une fonction qui dépend des variables \(x_1, x_2, ... x_n\). Pour \(k \in \{1,...,n\} \), la dérivée partielle de \(f\) par rapport à \(x_k\) est notée \(\frac{\partial f}{\partial x_k}\). Elle est la dérivée de la fonction par rapport à \(x_k\) lorsque nous considérons les autres variables comme des constantes.
Considère la fonction \(f(x,y) = xy^3\). Peux-tu déterminer ses dérivées partielles ?
Pour déterminer une dérivée partielle, nous devons faire comme si toutes les autres variables étaient des constantes. Pour \( \frac{\partial f}{\partial x} \), nous devons donc dériver en considérant \(y^3\) comme une constante. Ainsi, \( \frac{\partial f}{\partial x} = y^3\). Similairement, nous obtenons \( \frac{\partial f}{\partial y} = 2xy\).
Dérivées - Points clés
- Une fonction \(f\) est dérivable en \(x\) si la limite \(\lim_{h \to 0} \frac{f(x+h) -f(x)}{h}\) existe.
- Si une fonction est dérivable, sa dérivée est donc \(f'(x) = \lim_{h \to 0} \frac{f(x+h) -f(x)}{h}\).
- Au lieu de déterminer la dérivée à partir de cette définition, il faut mémoriser les dérivées des fonctions usuelles.
- Pour déterminer des dérivées, il faut également penser à utiliser certaines formules :
- \((f(x)+g(x))' = f'(x) + g'(x)\) ;
- \((f(x)g(x))' = f(x) \times g'(x) + f'(x) \times g(x)\) ;
- \(\left( \frac{f(x)}{g(x)} \right)' = \frac{f'(x)g(x) - f(x)g(x)}{g(x)^2}\) ;
- \((f \circ g)'(x) = g'(x)f'(g(x))\).
- Pour calculer une dérivée, il est parfois nécessaire d'utiliser plusieurs des formules ci-dessus.
- Une dérivée partielle est la dérivée d'une fonction à plusieurs variables par rapport à une variable en considérant les autres variables comme des constantes.
Comment tu t'assures que ton contenu est précis et digne de confiance ?
Chez StudySmarter, tu as créé une plateforme d'apprentissage qui sert des millions d'étudiants. Rencontre les personnes qui travaillent dur pour fournir un contenu basé sur des faits et pour veiller à ce qu'il soit vérifié.
Processus de création de contenu :
Lily Hulatt est une spécialiste du contenu numérique avec plus de trois ans d’expérience en stratégie de contenu et en conception de programmes. Elle a obtenu son doctorat en littérature anglaise à l’Université de Durham en 2022, a enseigné au Département d’études anglaises de l’Université de Durham, et a contribué à plusieurs publications. Lily se spécialise en littérature anglaise, langue anglaise, histoire et philosophie.
Fais connaissance avec Lily
Processus de contrôle de la qualité du contenu:
Gabriel Freitas est un ingénieur en intelligence artificielle possédant une solide expérience en développement logiciel, en algorithmes d’apprentissage automatique et en IA générative, notamment dans les applications des grands modèles de langage (LLM). Diplômé en génie électrique de l’Université de São Paulo, il poursuit actuellement une maîtrise en génie informatique à l’Université de Campinas, avec une spécialisation en apprentissage automatique. Gabriel a un solide bagage en ingénierie logicielle et a travaillé sur des projets impliquant la vision par ordinateur, l’IA embarquée et les applications LLM.
Fais connaissance avec Gabriel