Qu'est-ce-que l'analyse mathématique ?
L'analyse mathématique est l'étude des fonctions et de leurs propriétés. C'est une branche des mathématiques qui traite des changements continus, contrairement à l'algèbre qui traite des changements discrets. L'analyse comprend l'étude des limites, du calcul différentiel, du calcul intégral et d'autres sujets. L'analyse est utilisée dans de nombreux domaines, notamment la physique, l'ingénierie et l'économie.
L'un des concepts les plus importants de l'analyse mathématique est la limite. La limite d'une fonction en un point est la valeur dont la fonction s'approche au fur et à mesure qu'elle se rapproche de ce point. Par exemple, considérons la fonction f(x) =. Au fur et à mesure que x se rapproche de 0, la valeur de f(x) devient de plus en plus grande. Alors, la limite de f(x) lorsque x s'approche de 0 est l'infini.
Les limites sont utilisées pour définir d'autres concepts importants en analyse, tels que la continuité et la différentiabilité. En résumé, une fonction est continue en un point si sa limite existe en ce point et est différentiable en un point si sa dérivée existe en ce point. La dérivée d'une fonction est une mesure de la façon dont la fonction change lorsque son entrée change.
Limites de fonctions
Lorsque nous parlons de la limite d'une fonction, nous faisons référence à la valeur que la fonction approche lorsque l'entrée se rapproche de plus en plus d'une certaine valeur. En d'autres termes, la limite est la valeur vers laquelle la fonction < tend > au fur et à mesure qu'elle se rapproche d'une certaine valeur.
Fig. 1 - Limite de la fonction f(x) repésentée graphiquement
Une manière de penser à la limite d'une fonction est d'imaginer la représentation graphique de la fonction sur un repère. Au fur et à mesure que les valeurs d'entrée se rapprochent progressivement de la valeur qui nous intéresse, les points du graphique se rapprochent de plus en plus d'un certain point (la limite).
Il y a quelques éléments à garder à l'esprit lorsqu'on essaie de déterminer la limite d'une fonction :
Il existe plusieurs façons de noter la limite d'une fonction. La manière la plus courante est d'utiliser la notation suivante :
lim x --> a f(x) = L
Cette notation se lit comme suit : < la limite de f de x lorsque x s'approche de a est égale à L >. Il est important de noter que la limite d'une fonction n'existe que si la valeur de la fonction s'approche d'une certaine valeur pendant que l'entrée s'approche d'une certaine valeur.
Suites et limites
Une suite est une collection d'éléments qui sont disposés dans un ordre particulier. Les suites peuvent être finies ou infinies. Les suites finies ont une fin définie, tandis que les suites infinies se poursuivent indéfiniment.
Il existe de nombreux types de suites différentes qui peuvent être étudiées en mathématiques. Les suites arithmétiques sont peut-être le type de suite le plus simple. Une suite arithmétique est une séquence de nombres dans laquelle chaque nombre diffère du nombre précédent d'une même quantité.
La suite \(1, 2, 3, 4, 5, 6\) est arithmétique car chaque nombre est supérieur de 1 au nombre précédent. (\(1 + 2 = 3, 3 + 1 = 4, 4 + 1 = 5\)).
Les suites géométriques sont un autre type de suite que l'on peut étudier en mathématiques. Une suite géométrique est une séquence de nombres dans laquelle chaque nombre est un certain multiple du nombre précédent.
La suite \(12, 6, 3, 1.5\) est géométrique car chaque nombre est la moitié du nombre précédent.
Il existe de nombreux autres types de suites qui peuvent être étudiées. Cependant, toutes les suites ont un point commun : ce sont des collections d'éléments qui sont disposés dans un ordre particulier.
Les suites constituent un concept fondamental en mathématiques et peuvent être utilisées pour modéliser de nombreux phénomènes du monde réel.
Continuité
La continuité est un concept mathématique qui décrit le comportement d'une fonction lorsque ses entrées se rapprochent de plus en plus d'une certaine valeur. Plus précisément, la continuité signifie qu'une fonction se comporte de la même manière dans la « limite » qu'à la valeur actuelle.
La continuité est un concept clé en analyse, et elle est utilisée pour définir des objets mathématiques importants tels que la dérivée et l'intégrale. Une fonction est continue en un point si, dans un voisinage suffisamment petit autour de ce point, les valeurs de la fonction seront toujours proches de la valeur de la fonction au point.
Calcul différentiel
Le calcul différentiel est un sous-domaine des mathématiques qui traite de l'étude des taux de changement. En d'autres termes, il étudie la façon dont quelque chose change par rapport à quelque chose d'autre. Par exemple, si on veut savoir comment la vitesse d'une voiture évolue en fonction du temps, ou comment le chiffre d'affaires d'une entreprise est calculé. Le calcul différentiel est un outil puissant qui nous permet de comprendre et de quantifier ces types de changements.
La dérivée
L'un des concepts clés du calcul différentiel est la dérivée. La dérivée d'une fonction nous indique comment cette fonction change en un point particulier.
Si nous avons une fonction qui représente la position d'une voiture dans le temps, sa dérivée nous indiquerait la vitesse de la voiture à un moment donné. Graphiquement, elle est représentée comme la tangente de la courbe représentative de la fonction en ce point.
Fig. 2 - Tangente d'une courbe en un point
Le calcul différentiel est un sujet relativement difficile, mais il est très gratifiant une fois que l'on a appris à le maîtriser. Avec un peu de pratique, tu seras en mesure de résoudre des problèmes complexes qui seraient autrement impossibles.
Calcul intégral
L'intégration permet de trouver l'aire sous une courbe, ainsi que le volume d'un solide de révolution. L'intégration est un outil fondamental de mathématiques et est utilisée pour résoudre de nombreux problèmes de physique et d'ingénierie.
Fig. 3 - Aire S sous une courbe représentative de la fonction f(x)
L'intégration peut être effectuée en divisant la région en petits morceaux, puis en additionnant les surfaces de ces morceaux. Ce processus est appelé intégration numérique et peut être utilisé pour calculer approximativement l'aire sous une courbe. L'intégration peut également être réalisée de manière analytique, en utilisant des formules mathématiques. L'intégration analytique est souvent plus facile que l'intégration numérique, et elle peut donner des résultats plus précis.
L'intégration peut être utilisée pour déterminer le mouvement des objets, la résistance des matériaux et l'écoulement des fluides. C'est également un ingrédient clé dans la résolution des équations différentielles, qui sont utilisées pour modéliser de nombreux systèmes physiques.
Pour conclure, l'analyse est un domaine des mathématiques qui a une longue histoire. Certains des mathématiciens les plus célèbres, tels qu'Augustin-Louis Cauchy et Pierre-Simon Laplace, ont apporté des contributions majeures au domaine de l'analyse. C'est encore un domaine de recherche actif aujourd'hui, et de nombreux nouveaux résultats sont découverts en permanence.
Analyse mathématiques - Points à retenir
- L'analyse est un outil puissant qui peut être utilisé pour résoudre de nombreux problèmes en mathématiques et en physique.
- L'analyse comprend l'étude des limites, du calcul différentiel et du calcul intégral.
- La limite est la valeur vers laquelle la fonction « tend » au fur et à mesure qu'elle se rapproche d'une certaine valeur.
- Une suite est une collection d'éléments qui sont disposés dans un ordre particulier. Les suites peuvent être finies ou infinies.
- Le calcul différentiel étudie la façon dont une valeur ou quantité change par rapport à quelque chose d'autre.
- L'intégration est le processus qui permet de trouver l'aire sous une courbe, ainsi que le volume d'un solide de révolution.
Références
- Fig. 1 : Limite de la fonction f(x), Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Limit-at-infinity-graph.png) par Sverdrup (https://en.wikipedia.org/wiki/User:Sverdrup) sous license GNU Free Documentation License
- Fig. 2 : Tangente d'une courbe en un point, Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Tangent_to_a_curve.svg) par Jacj (https://en.wikipedia.org/wiki/User:Jacj) dans le domaine public
- Fig 3. : Aire S sous une courbe représentative de la fonction f(x), Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Integral_as_region_under_curve.svg) par 4C sous license GNU Free Documentation License
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel