Factorielle
La factorielle d'un nombre entier est le produit de tous les nombres entre \(1\) et ce nombre, inclus.
La factorielle d'un nombre entier s'écrit \(n!\), et \(n! = 1 \times 2 \times \ ... \times \ n\).
\(4! = 1 \times 2 \times 3 \times 4 = 24\)
Pour calculer la factorielle d'une somme, d'une différence ou d'un produit, il faut d'abord calculer chacune des factorielles et ensuite faire la somme, la différence ou le produit.
Calculons \(2! + 3!\).
\(2! = 1 \times 2 = 2\)
\(3! = 1 \times 2 \times 3 = 6\)
\(2! + 3! = 8\)
Nous pouvons faire des simplifications quand il s'agit d'un quotient, si \(a \geq b\) : \(\frac{a!}{b!} = a \times ... \times (a-b+1)\).
Calculons \(\frac{7!}{5!}\).
Il est juste si nous calculons d'abord \(7!\) et \(5!\), et ensuite effectuons le quotient. Or, il est plus rapide si nous utilisons la formule au-dessus.
\( \frac{7!}{5!} = 7 \times 6 = 42\)
Il est nécessaire de savoir manipuler les factorielles afin de calculer les coefficients binomiaux.
Coefficients binomiaux
Les coefficients binomiaux sont notés \( \binom{n}{k} \) ou \(C_{n}^k\), et nous disons « \(k\) parmi \(n\) ». En probabilités et en combinatoire, les coefficients binomiaux sont utilisés pour calculer le nombre de combinaisons de \(k\) objets parmi une collection de \(n\) objets. Ils sont également utilisés dans certaines lois de probabilité, notamment la loi binomiale. Dans notre cas, il est nécessaire de savoir calculer les coefficients binomiaux pour pouvoir appliquer la formule du binôme de Newton.
Pour \(n\) et \(k\) entiers, les coefficients binomiaux se calculent avec la formule suivante : \[ \binom{n}{k} = \frac{n!}{ k!( n-k)!} \]
Si tu sais bien manipuler des factorielles, tu peux calculer des coefficients binomiaux les yeux fermés. Voyons un exemple quand-même.
\( \binom{6}{4} \)
\( = \frac{6!}{4!( 6-4)!} \)
\( = \frac{6!}{4!2!} \)
\( = \frac{6 \times 5}{2} \)
\( = 3 \times 5 = 15 \)
Même si nous pouvons utiliser cette formule pour déterminer les coefficient binomiaux, il y a une autre façon : le triangle de Pascal.
Triangle de Pascal
Le triangle de Pascal est ainsi nommé grâce au scientifique français, Blaise Pascal, qui a trouvé plusieurs propriétés intéressantes de cet objet.
Fig. 1 - Le triangle de Pascal
Les lignes dans le triangle de Pascal correspondent à \(n\) dans le coefficient binomial et l'emplacement correspond à \(k\). Par exemple, le quatrième chiffre dans la sixième ligne est égale à \( \binom{6}{4} \). Alors, comment construire le triangle de Pascal ? Pour obtenir la ligne de chiffres en-dessous, il suffit d'additionner les deux chiffres juste au-dessus.
Fig. 2 - Comment construire le triangle de Pascal
Formule du binôme de Newton
La formule du binôme de Newton s'utilise pour calculer la puissance d'une somme de deux nombres. Elle est particulièrement utile si l'un ou les deux de ces nombres sont des inconnues. Si \(x\) et \(y\) sont deux nombres réels et \(n\) est un nombre naturel, alors nous avons : \[(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{k}y^{n-k}\]
Même si nous allons considérer que \(x\) et \(y\) sont des réels, cette formule est aussi valable pour les nombres complexes. Il existe également des formules similaires pour des matrices, ainsi que pour des polynômes.
Comme tu sais déjà calculer les coefficients binomiaux à l'aide des factorielles ou du triangle de Pascal, il devrait être facile d'appliquer cette formule. Regardons un exemple.
Développons \((1+x)^4\).
\((1+x)^4 \)
\(= \sum_{k=0}^{4} \binom{4}{k} 1^{k}x^{4-k}\)
\(= \binom{4}{0} 1^{0}x^{4} + \binom{4}{1} 1^{1}x^{3} + \binom{4}{2} 1^{2}x^{2} + \binom{4}{3} 1^{3}x^{1} + \binom{4}{4} 1^{4}x^{4-4}\)
\(= x^4 + 4x^3 + 6x^2 + 4x + 1\)
Le binôme de Newton permet aussi de retrouver certaines des identités remarquables.
Identités remarquables
Les identités remarquables permettent de développer et factoriser des expressions mathématiques que nous rencontrons fréquemment.
Les trois identités remarquables sont :
- \((a+b)^2 = a^2 + 2ab + b^2\)
- \((a-b)^2 = a^2 - 2ab + b^2\)
- \((a+b)(a-b) = a^2 - b^2\)
Nous pouvons dériver les deux premières identités remarquables avec la formule du binôme de Newton. Pour la première, il suffit de considérer le cas \(n = 2\) :
\((a+b)^2 \)
\(= \binom{2}{0} a^{0}b^{2-0} + \binom{2}{1} a^{1}b^{2-1} + \binom{2}{2} a^{2}b^{2-2} \)
\(= a^2 + 2ab + b^2 \)
Pour le développement de \(a-b\), nous devons remplacer \(b\) dans l'expression ci-dessous par \(-b\) :
\((a+ (-b))^2 \)
\(= \binom{2}{0} a^{0}(-b)^{2-0} + \binom{2}{1} a^{1}(-b)^{2-1} + \binom{2}{2} a^{2}(-b)^{2-2}\)
\(= a^2 - 2ab + b^2 \)
Binôme de Newton - Points clés
- La factorielle d'un nombre entier \(n\) se note \(n!\), et \(n! = 1 \times 2 \times \ ... \times \ n\)
- Les coefficients binomiaux peuvent se calculer grâce à cette formule : \[ \binom{n}{k} = \frac{n!}{ k!( n-k)!} \]
- Nous pouvons aussi calculer les coefficients binomiaux à l'aide du triangle de Pascal.
- Pour les nombres réels \(x\) et \(y\) et le nombre naturel \(n\), la formule du binôme de Newton s'écrit : \[(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{k}y^{n-k}\]
- Les trois identités remarquables sont : \[(a+b)^2 = a^2 + 2ab + b^2 \] \[(a-b)^2 = a^2 - 2ab + b^2 \] \[(a+b)(a-b) = a^2 - b^2 \]
Comment tu t'assures que ton contenu est précis et digne de confiance ?
Chez StudySmarter, tu as créé une plateforme d'apprentissage qui sert des millions d'étudiants. Rencontre les personnes qui travaillent dur pour fournir un contenu basé sur des faits et pour veiller à ce qu'il soit vérifié.
Processus de création de contenu :
Lily Hulatt est une spécialiste du contenu numérique avec plus de trois ans d’expérience en stratégie de contenu et en conception de programmes. Elle a obtenu son doctorat en littérature anglaise à l’Université de Durham en 2022, a enseigné au Département d’études anglaises de l’Université de Durham, et a contribué à plusieurs publications. Lily se spécialise en littérature anglaise, langue anglaise, histoire et philosophie.
Fais connaissance avec Lily
Processus de contrôle de la qualité du contenu:
Gabriel Freitas est un ingénieur en intelligence artificielle possédant une solide expérience en développement logiciel, en algorithmes d’apprentissage automatique et en IA générative, notamment dans les applications des grands modèles de langage (LLM). Diplômé en génie électrique de l’Université de São Paulo, il poursuit actuellement une maîtrise en génie informatique à l’Université de Campinas, avec une spécialisation en apprentissage automatique. Gabriel a un solide bagage en ingénierie logicielle et a travaillé sur des projets impliquant la vision par ordinateur, l’IA embarquée et les applications LLM.
Fais connaissance avec Gabriel