Factorielle
La factorielle d'un nombre entier est le produit de tous les nombres entre \(1\) et ce nombre, inclus.
La factorielle d'un nombre entier s'écrit \(n!\), et \(n! = 1 \times 2 \times \ ... \times \ n\).
\(4! = 1 \times 2 \times 3 \times 4 = 24\)
Pour calculer la factorielle d'une somme, d'une différence ou d'un produit, il faut d'abord calculer chacune des factorielles et ensuite faire la somme, la différence ou le produit.
Calculons \(2! + 3!\).
\(2! = 1 \times 2 = 2\)
\(3! = 1 \times 2 \times 3 = 6\)
\(2! + 3! = 8\)
Nous pouvons faire des simplifications quand il s'agit d'un quotient, si \(a \geq b\) : \(\frac{a!}{b!} = a \times ... \times (a-b+1)\).
Calculons \(\frac{7!}{5!}\).
Il est juste si nous calculons d'abord \(7!\) et \(5!\), et ensuite effectuons le quotient. Or, il est plus rapide si nous utilisons la formule au-dessus.
\( \frac{7!}{5!} = 7 \times 6 = 42\)
Il est nécessaire de savoir manipuler les factorielles afin de calculer les coefficients binomiaux.
Coefficients binomiaux
Les coefficients binomiaux sont notés \( \binom{n}{k} \) ou \(C_{n}^k\), et nous disons « \(k\) parmi \(n\) ». En probabilités et en combinatoire, les coefficients binomiaux sont utilisés pour calculer le nombre de combinaisons de \(k\) objets parmi une collection de \(n\) objets. Ils sont également utilisés dans certaines lois de probabilité, notamment la loi binomiale. Dans notre cas, il est nécessaire de savoir calculer les coefficients binomiaux pour pouvoir appliquer la formule du binôme de Newton.
Pour \(n\) et \(k\) entiers, les coefficients binomiaux se calculent avec la formule suivante : \[ \binom{n}{k} = \frac{n!}{ k!( n-k)!} \]
Si tu sais bien manipuler des factorielles, tu peux calculer des coefficients binomiaux les yeux fermés. Voyons un exemple quand-même.
\( \binom{6}{4} \)
\( = \frac{6!}{4!( 6-4)!} \)
\( = \frac{6!}{4!2!} \)
\( = \frac{6 \times 5}{2} \)
\( = 3 \times 5 = 15 \)
Même si nous pouvons utiliser cette formule pour déterminer les coefficient binomiaux, il y a une autre façon : le triangle de Pascal.
Triangle de Pascal
Le triangle de Pascal est ainsi nommé grâce au scientifique français, Blaise Pascal, qui a trouvé plusieurs propriétés intéressantes de cet objet.
Fig. 1 - Le triangle de Pascal
Les lignes dans le triangle de Pascal correspondent à \(n\) dans le coefficient binomial et l'emplacement correspond à \(k\). Par exemple, le quatrième chiffre dans la sixième ligne est égale à \( \binom{6}{4} \). Alors, comment construire le triangle de Pascal ? Pour obtenir la ligne de chiffres en-dessous, il suffit d'additionner les deux chiffres juste au-dessus.
Fig. 2 - Comment construire le triangle de Pascal
Formule du binôme de Newton
La formule du binôme de Newton s'utilise pour calculer la puissance d'une somme de deux nombres. Elle est particulièrement utile si l'un ou les deux de ces nombres sont des inconnues. Si \(x\) et \(y\) sont deux nombres réels et \(n\) est un nombre naturel, alors nous avons : \[(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{k}y^{n-k}\]
Même si nous allons considérer que \(x\) et \(y\) sont des réels, cette formule est aussi valable pour les nombres complexes. Il existe également des formules similaires pour des matrices, ainsi que pour des polynômes.
Comme tu sais déjà calculer les coefficients binomiaux à l'aide des factorielles ou du triangle de Pascal, il devrait être facile d'appliquer cette formule. Regardons un exemple.
Développons \((1+x)^4\).
\((1+x)^4 \)
\(= \sum_{k=0}^{4} \binom{4}{k} 1^{k}x^{4-k}\)
\(= \binom{4}{0} 1^{0}x^{4} + \binom{4}{1} 1^{1}x^{3} + \binom{4}{2} 1^{2}x^{2} + \binom{4}{3} 1^{3}x^{1} + \binom{4}{4} 1^{4}x^{4-4}\)
\(= x^4 + 4x^3 + 6x^2 + 4x + 1\)
Le binôme de Newton permet aussi de retrouver certaines des identités remarquables.
Identités remarquables
Les identités remarquables permettent de développer et factoriser des expressions mathématiques que nous rencontrons fréquemment.
Les trois identités remarquables sont :
- \((a+b)^2 = a^2 + 2ab + b^2\)
- \((a-b)^2 = a^2 - 2ab + b^2\)
- \((a+b)(a-b) = a^2 - b^2\)
Nous pouvons dériver les deux premières identités remarquables avec la formule du binôme de Newton. Pour la première, il suffit de considérer le cas \(n = 2\) :
\((a+b)^2 \)
\(= \binom{2}{0} a^{0}b^{2-0} + \binom{2}{1} a^{1}b^{2-1} + \binom{2}{2} a^{2}b^{2-2} \)
\(= a^2 + 2ab + b^2 \)
Pour le développement de \(a-b\), nous devons remplacer \(b\) dans l'expression ci-dessous par \(-b\) :
\((a+ (-b))^2 \)
\(= \binom{2}{0} a^{0}(-b)^{2-0} + \binom{2}{1} a^{1}(-b)^{2-1} + \binom{2}{2} a^{2}(-b)^{2-2}\)
\(= a^2 - 2ab + b^2 \)
Binôme de Newton - Points clés
- La factorielle d'un nombre entier \(n\) se note \(n!\), et \(n! = 1 \times 2 \times \ ... \times \ n\)
- Les coefficients binomiaux peuvent se calculer grâce à cette formule : \[ \binom{n}{k} = \frac{n!}{ k!( n-k)!} \]
- Nous pouvons aussi calculer les coefficients binomiaux à l'aide du triangle de Pascal.
- Pour les nombres réels \(x\) et \(y\) et le nombre naturel \(n\), la formule du binôme de Newton s'écrit : \[(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{k}y^{n-k}\]
- Les trois identités remarquables sont : \[(a+b)^2 = a^2 + 2ab + b^2 \] \[(a-b)^2 = a^2 - 2ab + b^2 \] \[(a+b)(a-b) = a^2 - b^2 \]
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel