La compréhension des mécanismes de réplication de l'ADN est essentielle non seulement pour la recherche fondamentale en biologie, mais aussi pour la mise au point de nouveaux traitements pour les maladies et les troubles génétiques.
La réplication de l'ADN intervient dans le noyau cellulaire pendant la phase que l'on appelle S, avant la division cellulaire. Avant que la cellule ne se divise lors de la mitose ou de la méiose, l'ADN doit être répliqué afin que les cellules filles contiennent la bonne quantité de matériel génétique.
Mais pourquoi la division cellulaire est-elle nécessaire en premier lieu ?
- La mitose est nécessaire pour la croissance et la réparation des tissus endommagés, et pour la reproduction asexuée.
- La méiose est nécessaire pour la synthèse des cellules gamétiques indispensables à la reproduction sexuée.
La réplication de l'ADN a lieu dans le noyau des cellules eucaryotes. La réplication de l'ADN, qui se produit dans toutes les cellules vivantes, est dite semi-conservative, ce qui signifie que la nouvelle molécule d'ADN aura un brin d'origine (également appelé brin parent) et un nouveau brin d'ADN. Ce modèle de réplication de l'ADN est le plus largement admis, mais un autre modèle, appelé réplication conservative, a également été proposé.
Ce cours passera en revue les étapes de la réplication de l'ADN et le mécanisme de la réplication de l'ADN, avec des information supplémentaires sur ces deux éléments.
À la fin de ce cours, nous décrirons une expérience majeure qui a permis à la réplication semi-conservative de devenir le modèle communément admis.
Les étapes de la réplication de l'ADN
Les étapes de la réplication décrites ci-dessous et illustrées dans la Figure 1 doivent être exécutées parfaitement pour éviter que les cellules filles ne contiennent de l'ADN muté, c'est-à-dire de l'ADN qui a été répliqué de manière incorrecte. Lors de réplication de l'ADN semi-conservative, chaque brin de la molécule d'ADN originale sert de modèle pour la synthèse d'un nouveau brin d'ADN.
Étape 1 : la double hélice de l'ADN se déroule grâce à l'enzyme ADN hélicase. Cette enzyme rompt les liaisons hydrogène entre les paires de bases complémentaires. Une fourche de réplication est créée, qui est la structure en forme de Y de l'ADN qui se défait. Chaque « branche » de la fourche est un unique brin d'ADN exposé. À mesure que les deux brins parents se séparent, le brin avancé continue d'être synthétisé et un nouveau fragment de brin retardé peut être formé.
Étape 2 : des nucléotides, qui sont les éléments de base composant l'ADN, sont libres de se déplacer dans le noyau et viennent s'apparier avec leur base complémentaire sur les brins exposés de l'ADN matrice. Des liaisons hydrogène se forment ainsi entre les paires de bases complémentaires.
Étape 3 : l'enzyme ADN polymérase est créée alors des liaisons phosphodiester entre les nucléotides adjacents par le biais de réactions de condensation, formant ainsi effectivement un nouveau brin. Pour ce faire, L'ADN polymérase doit nécessairement lire le brin parent de l'extrémité 3' de l'ADN vers l'extrémité 5', ce qui signifie que le nouveau brin d'ADN, qui est complémentaire au brin parent, est synthétisé dans le sens 5' vers 3'.
N'oublie pas : la double hélice de l'ADN est antiparallèle !
Fig. 1 - Schéma de la réplication de l'ADN
Légende :
A = ADN hélicase
B = brin parent (ou brin matrice)
C = amorce d'ARN
D = brin avancé (ou brin continu)
E = brin retardé (ou brin discontinu)
F = fragment d'Okazaki
Mécanisme de la réplication de l'ADN
Réplication continue et discontinue
Les deux extrémités d'un brin d'ADN présentent des différences. On distingue une extrémité 5' et une extrémité 3', correspondant aux numéros des atomes de carbone du désoxyribose, qui est le sucre présent dans chaque nucléotide. L'ADN polymérase, l'enzyme qui catalyse la formation des liaisons phosphodiesters entre les nucléotides adjacents, ne peut fabriquer les nouveaux brins d'ADN que dans le sens 5' vers 3'.
Cela signifie que ces deux nouveaux brins sont synthétisés différemment. Un premier brin, appelé brin avancé, est formé en un seul morceau, car il est continuellement synthétisé par l'ADN polymérase, qui se déplace dans ce cas vers la fourche de réplication. En revanche, l'autre nouveau brin d'ADN, le brin retardé, doit être synthétisé de façon discontinue, car l'ADN polymérase créé toujours les liaisons phosphodiesters dans le sens 5' vers 3' et se déplace ainsi cette fois en s'éloignant de la fourche de réplication.
Mais comment cela fonctionne-t-il si l'ADN polymérase se déplace dans le sens inverse ?
Ce nouveau brin, appelé brin retard, est synthétisé en fragments, appelés fragments d'Okazaki. Dans ce cas, une réplication discontinue se produit lorsque l'ADN polymérase s'éloigne de la fourche de réplication. Les fragments d'Okazaki doivent être reliés entre eux par des liaisons phosphodiester, ce qui est catalysé par une autre enzyme appelée ADN ligase.
Quelles sont les enzymes de réplication de l'ADN ?
La réplication semi-conservative de l'ADN repose sur l'action d'enzymes.
Les 3 principales enzymes impliquées sont l'ADN hélicase, l'ADN polymérase et l'ADN ligase qui sont décrites dans le tableau ci-dessous.
Tableau 1 - Les enzymes impliquées dans la réplication semi-conservative de l'ADN.
Enzyme | Description |
ADN hélicase | L'ADN hélicase est impliquée dans les premières étapes de la réplication de l'ADN. Elle brise les liaisons hydrogène entre les paires de bases complémentaires pour exposer les bases du brin d'ADN d'origine. Cela permet aux nucléotides libres de se fixer à leur paire complémentaire. |
ADN polymérase | L'ADN polymérase catalyse la formation de nouvelles liaisons phosphodiester entre les nucléotides libres par le biais de réactions de condensation. Cela crée le nouveau brin polynucléotidique de l'ADN. |
ADN ligase | L'ADN ligase s'emploie à réunir les fragments d'Okazaki au cours de la réplication discontinue en catalysant la formation de liaisons phosphodiester. Bien que l'ADN polymérase et l'ADN ligase forment toutes deux des liaisons phosphodiester, les deux enzymes sont nécessaires car elles possèdent chacune des sites actifs différents pour leurs substrats spécifiques. L'ADN ligase est également une enzyme clé impliquée dans la technologie de l'ADN recombinant avec les vecteurs plasmidiques. |
Réplication de l'ADN semi-conservative
Deux modèles de réplication de l'ADN ont été historiquement avancés : la réplication conservative et la réplication semi-conservative.
Le modèle de réplication conservative de l'ADN suggère qu'après un tour, il reste la molécule d'ADN d'origine et une molécule d'ADN entièrement nouvelle composée de nouveaux nucléotides.
Le modèle de réplication semi-conservative de l'ADN, en revanche, suggère qu'après un tour, les deux molécules d'ADN contiennent un brin d'ADN original et un nouveau brin d'ADN. Il s'agit du modèle que nous avons décrit dans cet article.
Expérience de Meselson et Stahl
Dans les années 1950, deux scientifiques, Matthew Meselson et Franklin Stahl, ont réalisé une expérience qui a permis au modèle semi-conservatif de prendre le dessus et d'être communément accepté par la communauté scientifique.
Comment ont-ils fait ?
Les nucléotides de l'ADN contiennent de l'azote dans les bases nucléiques. Meselson et Stahl savaient déjà que l'azote se présentait sous forme de deux isotopes : N15 et N14, le N15 étant l'isotope le plus lourd.
Les scientifiques ont commencé par cultiver Escherichia coli dans un milieu contenant uniquement du N15, ce qui a permis aux bactéries d'absorber l'azote et de l'incorporer dans les nucléotides de leur ADN. Les bactéries ont ainsi été marquées au N15.
Escherichia coli (également E. coli) est une bactérie présente dans l'intestin des humains et de nombreux animaux.
Fig. 2 - La bactérie Escherichia coli vue au microscope
Les mêmes bactéries ont ensuite été cultivées dans un milieu différent ne contenant que du N14 et ont pu se diviser sur plusieurs générations. Meselson et Stahl voulaient mesurer la densité de l'ADN et donc la quantité de N15 et de N14 dans les bactéries ; ils ont donc centrifugé des échantillons après chaque génération. Dans leurs échantillons, l'ADN le plus léger apparaît plus haut dans le tube que l'ADN le plus lourd. Voici les résultats obtenus après chaque génération :
Génération 1 : 1 seule bande dans une position intermédiaire par rapport à la génération 0 et au contrôle N14. Cela indique que certaines molécules d'ADN sont composées à la fois de N15 et de N14 et présentent donc une densité intermédiaire. Le modèle de réplication semi-conservative de l'ADN prédit ce résultat. En revanche, le modèle conservatif prévoit qu'il apparaisse de l'ADN lourd et de l'ADN léger mais pas d'ADN hybride de densité intermédiaire.
Les résultats de l'expérience de Meselson et Stahl montrent que chaque brin d'ADN sert de modèle à un nouveau brin et qu'après chaque cycle de réplication, la molécule d'ADN résultante contient à la fois un brin original et un nouveau brin.
Les scientifiques ont donc conclu que l'ADN se réplique de manière semi-conservative.
Réplication de l'ADN - Points clés
- La réplication de l'ADN a lieu avant la division cellulaire, pendant la phase S, et est importante pour garantir que chaque cellule fille contient la quantité correcte d'informations génétiques.
- Les principales enzymes impliquées dans la réplication de l'ADN sont l'ADN hélicase, l'ADN polymérase et l'ADN ligase.
- La réplication semi-conservative de l'ADN stipule que la nouvelle molécule d'ADN contiendra un brin d'ADN original et un nouveau brin d'ADN. Cette hypothèse a été prouvée par Meselson et Stahl dans les années 1950.
How we ensure our content is accurate and trustworthy?
At StudySmarter, we have created a learning platform that serves millions of students. Meet
the people who work hard to deliver fact based content as well as making sure it is verified.
Content Creation Process:
Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.
Get to know Lily
Content Quality Monitored by:
Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.
Get to know Gabriel