Épigénétique

Mobile Features AB

Comme tu le sais peut-être déjà, les gènes peuvent être activés ou désactivés, ce qui détermine s'ils sont exprimés. Les changements épigénétiques peuvent activer et désactiver ces gènes et sont causés par les comportements et l'environnement. Dans ce résumé de cours, nous définirons l'épigénétique et ses différents mécanismes comme la méthylation de l'ADN. Ensuite, nous verrons quels facteurs affectent l'épigénétique d'un individu, notamment l'alimentation et le traumatisme. Enfin, nous ferons le point sur l'épigénétique transgénérationnelle et nous étudierons quelques exemples de changements épigénétiques.

C'est parti

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Tables des matières
Tables des matières
  • Fact Checked Content
  • Last Updated: 24.05.2023
  • reading time:10 min
  • Content creation process designed by
    Lily Hulatt Avatar
  • Content cross-checked by
    Gabriel Freitas Avatar
  • Content quality checked by
    Gabriel Freitas Avatar
Sign up for free to save, edit & create flashcards.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    Définition d'épigénétique

    Chez les eucaryotes, une façon de contrôler l'expression des gènes est de procéder à des changements épigénétiques.

    L'épigénétique est l'étude des mécanismes qui entraînent des changements dans l'expression des gènes, qui peuvent être transmis d'une cellule à l'autre et sont réversibles, mais qui n'impliquent pas de changement dans la séquence de l'ADN.

    Mécanismes épigénétiques

    Il existe trois exemples principaux de changements épigénétiques qui peuvent modifier l'expression des gènes : la méthylation de l'ADN, la modification des histones, et l'action de l'ARN non codant.

    Méthylation de l'ADN

    La méthylation de l'ADN utilise des groupes chimiques pour se fixer à certains points du brin d'ADN. Ces groupes chimiques empêchent les protéines de se fixer à l'ADN afin de le « lire ». Pour enlever les groupes chimiques, la déméthylation se produit. Les gènes sont « activés » pendant la déméthylation et « désactivés » pendant la méthylation.

    Epigénétique Méthylation de l'ADN StudySmarterFig. 1 - La méthylation de l'ADN

    Modification des histones

    La modification des histones est un autre exemple de changement épigénétique. Selon la façon dont l'ADN est condensé autour des histones, cela détermine si le gène est « activé » ou « désactivé ». De l'ADN très condensée empêche les protéines de se lier à l'ADN, ce qui maintient le gène inactivé. Dans le cas contraire, cela facilite la liaison des protéines à l'ADN, ce qui active le gène. Des groupes chimiques peuvent être ajoutés ou retirés pour modifier la densité des histones, ce qui active ou désactive les gènes.

    Les histones sont un type de protéine autour duquel l'ADN s'enroule pour se condenser en chromatine.

    Action de l'ARN non codant

    L'action de l'ARN non codant, un mécanisme épigénétique, est un processus qui permet de réguler l'expression des gènes sans modifier la séquence d'ADN d'une cellule. Grâce à l'action des ARN non codants, les gènes peuvent être désactivés ou activés dans le noyau cellulaire en fonction de stimuli externes ou de conditions environnementales.

    Les organismes disposent ainsi d'un moyen innovant de réagir de manière dynamique à leur environnement et de mieux utiliser les ressources qui s'y trouvent. Les ARN non codants agissent en interagissant avec les structures de la chromatine et en activant les modificateurs d'histones, ce qui affecte la transcription et la traduction des gènes.

    Différences entre les changements génétiques et épigénétiques

    Il existe des différences entre les changements génétiques et épigénétiques. La principale est que les changements épigénétiques proviennent du comportement et de l'environnement, alors que les changements génétiques proviennent de l'intérieur de l'organisme.

    De plus, les changements génétiques impliquent la séquence d'ADN, tandis que les changements épigénétiques n'impliquent pas la séquence d'ADN. Les changements épigénétiques sont aussi généralement considérés comme réversibles grâce à des modifications du mode de vie et de l'environnement, alors que les changements génétiques ne le sont pas.

    Facteurs épigénétiques

    Il existe différentes causes aux changements épigénétiques. En voici quelques-unes :

    • vieillissement ;

    • exercice physique ;

    • régime alimentaire ;

    • polluants environnementaux ;

    • consommation de tabac ;

    • alcool ;

    • stress/santé mentale ;

    • santé maternelle, alimentation et tabagisme pendant la grossesse ;

    • météo ;

    • maladies ;

    • médicaments.

    Bien que cela puisse prendre du temps, la plupart de ces changements épigénétiques peuvent être inversés grâce à des changements de mode de vie et d'environnement. Par exemple, manger plus sainement, faire plus d'exercice et réduire le stress peuvent tous aider à inverser les changements épigénétiques négatifs.

    Épigénétique et traumatisme

    Un traumatisme peut avoir un effet profond et durable sur l'épigénétique d'un individu. Lorsqu'un individu subit un traumatisme, le corps subit des changements physiologiques importants qui entraînent des réponses prolongées au stress. Ces changements modifient également l'expression des gènes, ce qui entraîne des modifications de l'épigénome.

    Il est bien établi que ces altérations peuvent avoir des impacts à long terme sur la santé physique et psychiatrique de l'individu, certains individus étant plus enclins que d'autres à transmettre un traumatisme familial par le biais de leur épigénétique. Ainsi, comprendre comment le traumatisme influence l'épigénétique permet de comprendre comment nous pouvons réduire l'impact négatif des expériences traumatiques sur la santé physique et mentale.

    Épigénétique et alimentation

    Pendant la grossesse, l'alimentation joue un rôle important dans l'épigénétique de l'enfant et peut l'influencer pendant des décennies. Par exemple, s'il y a une famine, il y a moins de nourriture à manger, ce qui peut entraîner des niveaux modifiés de méthylation de l'ADN pour différents gènes, ce qui peut entraîner des possibilités de maladies plus tard dans la vie, comme les maladies cardiaques ou le diabète de type II.

    Épigénétique transgénérationnelle

    Comme nous l'avons vu précédemment, les effets épigénétiques altèrent l'expression des gènes. Certaines de ces modifications épigénétiques peuvent être réversibles au cours de la vie d'un individu, mais d'autres peuvent être permanentes ou même être transmises à la génération suivante.

    Par exemple, il a été démontré que le diabète gestationnel chez une mère enceinte peut augmenter la probabilité que sa fille développe un diabète gestationnel à l'avenir. Ces concentrations élevées de glucose provoquent des changements épigénétiques dans l'ADN de la fille.

    Le diabète gestationnel est une maladie des femmes enceintes qui entraîne des niveaux élevés de glycémie chez la mère et le fœtus.

    Les cellules reproductrices contiennent normalement des étiquettes épigénétiques qui aident à déterminer les changements épigénétiques, mais avant que les cellules reproductrices puissent se rencontrer, ces étiquettes doivent être retirées dans un processus connu sous le nom de reprogrammation, afin que les embryons puissent créer des cellules spécialisées pendant leur développement. Alors que la plupart des étiquettes épigénétiques sont supprimées, une petite quantité d'environ 1 % est capable de se faufiler chez les mammifères.

    Une femme qui fume pendant sa grossesse transmettra des changements épigénétiques à elle-même et à son enfant, et si son enfant est une fille, il y aura également des changements dans les cellules reproductives de sa fille.

    Un exemple de changement épigénétique que cette mère peut créer est que le tabagisme est capable d'augmenter les hormones de signalisation de la faim, ce qui peut entraîner l'obésité chez ses enfants et potentiellement ses futurs petits-enfants.

    Épigénétique : exemples

    Maintenant, explorons quelques exemples de changements épigénétiques. Un exemple d'épigénétique est l'âge. L'épigénétique diffère de l'âge du nouveau-né à l'âge de l'enfance et de l'âge adulte, plus précisément les niveaux de méthylation de l'ADN diminuent avec l'âge.

    Un autre exemple d'épigénétique est la spécialisation des cellules. Toutes les cellules de ton corps contiennent le même ADN, mais différents gènes sont activés et désactivés en fonction du type de fonctions dont la cellule a besoin. Par exemple, les cellules musculaires et les cellules de la peau ont des fonctions différentes, donc les cellules musculaires « désactiveraient » tout ce qui ne leur serait pas utile, comme les gènes utilisés pour les cellules de la peau.

    Un dernier exemple de l'épigénétique est qu'elle peut être réversible. Par exemple, si quelqu'un fume, alors il a des niveaux réduits de méthylation de l'ADN par rapport à quelqu'un qui ne fume pas. Si quelqu'un arrête de fumer, cela prendra du temps, mais ses niveaux de méthylation de l'ADN reviendront aux niveaux de quelqu'un qui ne fume pas.

    Épigénétique et cancer

    Les changements épigénétiques peuvent aussi conduire au développement de différents types de cancers.

    Les mutations de certains gènes peuvent potentiellement augmenter le risque de cancer, comme une mutation du gène BRCA1 peut augmenter le risque de développer un cancer du sein. Dans les cellules cancéreuses, alors que certains gènes auront des niveaux élevés de méthylation de l'ADN, la méthylation de l'ADN est globalement plus faible que dans les cellules normales. L'épigénétique peut être utilisée pour détecter des cancers difficiles à trouver ou déterminer le type de cancer dont souffre une personne, mais d'autres tests seront nécessaires pour diagnostiquer le cancer.

    Si tu veux en savoir plus, jette un coup d'œil à notre résumé de cours sur le cancer !

    Les changements épigénétiques peuvent rendre les organismes plus sensibles aux maladies. Par exemple, certains germes peuvent modifier l'épigénétique pour affaiblir volontairement le système immunitaire afin d'améliorer leur survie au sein d'un organisme.

    Épigénétique - Points clés

    • Les changements épigénétiques sont l'impact sur l'expression des gènes par des choix environnementaux et comportementaux.
    • Certains changements épigénétiques sont l'âge, le tabagisme, le régime alimentaire, l'exercice et la consommation d'alcool.
    • Il existe trois exemples principaux de changements épigénétiques qui peuvent modifier l'expression des gènes : la méthylation de l'ADN, la modification des histones, et l'action de l'ARN non codant.
    • Les changements épigénétiques peuvent être réversibles en fonction de ce qui les a provoqués.
    • Certains changements épigénétiques peuvent être hérités des parents.
    • Les changements épigénétiques peuvent aussi conduire au développement de différents types de cancers.
    Questions fréquemment posées en Épigénétique

    Comment fonctionne l'épigénétique ?  

    L'épigénétique est l'étude de la manière dont l'expression génétique peut être influencée par des facteurs autres que les modifications de la séquence d'ADN. Il s'agit d'un domaine relativement nouveau qui étudie la manière dont les facteurs liés à l'environnement et au mode de vie, tels que la nutrition et le stress, peuvent modifier les schémas d'expression génétique sans altérer le code génétique sous-jacent. 

    Comment sont définis les facteurs épigénétiques ? 

    Les facteurs épigénétiques sont définis comme toute modification physique ou fonctionnelle d'un gène qui se produit sans changer sa séquence nucléotidique. Ces changements peuvent être transmis d'une génération à l'autre, ce qui nous permet d'observer des traits héréditaires même lorsqu'il n'y a pas eu de variation dans la séquence d'ADN sous-jacente elle-même.

    Comment l'environnement influence nos gènes ? 

    L'environnement peut influencer nos gènes par le biais de l'épigénétique en affectant différents types de modifications chimiques qui affectent les niveaux d'expression des gènes. Par exemple, l'exposition à certaines toxines peut entraîner une méthylation accrue de certaines parties de notre génome, ce qui a pour effet de réguler plus étroitement ces régions et de réduire les chances d'expression des gènes qu'elles contiennent.

    Qui a découvert l'épigénétique ?  

    L'épigénétique a été découverte par Conrad Waddington en 1942 alors qu'il étudiait la génétique des mouches drosophiles à l'université de Cambridge, mais ses travaux n'ont été largement acceptés que bien plus tard au XXe siècle, lorsque les techniques de biologie moléculaire sont devenues disponibles, permettant aux scientifiques d'explorer ce concept de plus près.

    Comment agir sur l'épigénétique ?  

    Il existe un certain nombre de moyens d'agir sur l'épigénétique afin d'influencer nos gènes et leur expression. Parmi les méthodes les plus populaires figurent les changements de régime alimentaire, l'augmentation de l'activité physique, la méditation et les pratiques de pleine conscience, ainsi que les techniques de réduction du stress comme le yoga ou les exercices de respiration profonde.

    Sauvegarder l'explication
    How we ensure our content is accurate and trustworthy?

    At StudySmarter, we have created a learning platform that serves millions of students. Meet the people who work hard to deliver fact based content as well as making sure it is verified.

    Content Creation Process:
    Lily Hulatt Avatar

    Lily Hulatt

    Digital Content Specialist

    Lily Hulatt is a Digital Content Specialist with over three years of experience in content strategy and curriculum design. She gained her PhD in English Literature from Durham University in 2022, taught in Durham University’s English Studies Department, and has contributed to a number of publications. Lily specialises in English Literature, English Language, History, and Philosophy.

    Get to know Lily
    Content Quality Monitored by:
    Gabriel Freitas Avatar

    Gabriel Freitas

    AI Engineer

    Gabriel Freitas is an AI Engineer with a solid experience in software development, machine learning algorithms, and generative AI, including large language models’ (LLMs) applications. Graduated in Electrical Engineering at the University of São Paulo, he is currently pursuing an MSc in Computer Engineering at the University of Campinas, specializing in machine learning topics. Gabriel has a strong background in software engineering and has worked on projects involving computer vision, embedded AI, and LLM applications.

    Get to know Gabriel

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Biologie

    • Temps de lecture: 10 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !